Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2d Structured version   Visualization version   GIF version

Theorem riotasv2d 34062
Description: Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 4865). Special case of riota2f 6617. (Contributed by NM, 2-Mar-2013.)
Hypotheses
Ref Expression
riotasv2d.1 𝑦𝜑
riotasv2d.2 (𝜑𝑦𝐹)
riotasv2d.3 (𝜑 → Ⅎ𝑦𝜒)
riotasv2d.4 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
riotasv2d.5 ((𝜑𝑦 = 𝐸) → (𝜓𝜒))
riotasv2d.6 ((𝜑𝑦 = 𝐸) → 𝐶 = 𝐹)
riotasv2d.7 (𝜑𝐷𝐴)
riotasv2d.8 (𝜑𝐸𝐵)
riotasv2d.9 (𝜑𝜒)
Assertion
Ref Expression
riotasv2d ((𝜑𝐴𝑉) → 𝐷 = 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑦,𝐸   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasv2d
StepHypRef Expression
1 elex 3207 . 2 (𝐴𝑉𝐴 ∈ V)
2 riotasv2d.8 . . . 4 (𝜑𝐸𝐵)
32adantr 481 . . 3 ((𝜑𝐴 ∈ V) → 𝐸𝐵)
4 riotasv2d.9 . . . 4 (𝜑𝜒)
54adantr 481 . . 3 ((𝜑𝐴 ∈ V) → 𝜒)
6 eleq1 2687 . . . . . . . 8 (𝑦 = 𝐸 → (𝑦𝐵𝐸𝐵))
76adantl 482 . . . . . . 7 ((𝜑𝑦 = 𝐸) → (𝑦𝐵𝐸𝐵))
8 riotasv2d.5 . . . . . . 7 ((𝜑𝑦 = 𝐸) → (𝜓𝜒))
97, 8anbi12d 746 . . . . . 6 ((𝜑𝑦 = 𝐸) → ((𝑦𝐵𝜓) ↔ (𝐸𝐵𝜒)))
10 riotasv2d.6 . . . . . . 7 ((𝜑𝑦 = 𝐸) → 𝐶 = 𝐹)
1110eqeq2d 2630 . . . . . 6 ((𝜑𝑦 = 𝐸) → (𝐷 = 𝐶𝐷 = 𝐹))
129, 11imbi12d 334 . . . . 5 ((𝜑𝑦 = 𝐸) → (((𝑦𝐵𝜓) → 𝐷 = 𝐶) ↔ ((𝐸𝐵𝜒) → 𝐷 = 𝐹)))
1312adantlr 750 . . . 4 (((𝜑𝐴 ∈ V) ∧ 𝑦 = 𝐸) → (((𝑦𝐵𝜓) → 𝐷 = 𝐶) ↔ ((𝐸𝐵𝜒) → 𝐷 = 𝐹)))
14 riotasv2d.4 . . . . 5 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
15 riotasv2d.7 . . . . 5 (𝜑𝐷𝐴)
1614, 15riotasvd 34061 . . . 4 ((𝜑𝐴 ∈ V) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
17 riotasv2d.1 . . . . 5 𝑦𝜑
18 nfv 1841 . . . . 5 𝑦 𝐴 ∈ V
1917, 18nfan 1826 . . . 4 𝑦(𝜑𝐴 ∈ V)
20 nfcvd 2763 . . . 4 ((𝜑𝐴 ∈ V) → 𝑦𝐸)
21 nfvd 1842 . . . . . . 7 (𝜑 → Ⅎ𝑦 𝐸𝐵)
22 riotasv2d.3 . . . . . . 7 (𝜑 → Ⅎ𝑦𝜒)
2321, 22nfand 1824 . . . . . 6 (𝜑 → Ⅎ𝑦(𝐸𝐵𝜒))
24 nfra1 2938 . . . . . . . . 9 𝑦𝑦𝐵 (𝜓𝑥 = 𝐶)
25 nfcv 2762 . . . . . . . . 9 𝑦𝐴
2624, 25nfriota 6605 . . . . . . . 8 𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
2717, 14nfceqdf 2758 . . . . . . . 8 (𝜑 → (𝑦𝐷𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))))
2826, 27mpbiri 248 . . . . . . 7 (𝜑𝑦𝐷)
29 riotasv2d.2 . . . . . . 7 (𝜑𝑦𝐹)
3028, 29nfeqd 2769 . . . . . 6 (𝜑 → Ⅎ𝑦 𝐷 = 𝐹)
3123, 30nfimd 1821 . . . . 5 (𝜑 → Ⅎ𝑦((𝐸𝐵𝜒) → 𝐷 = 𝐹))
3231adantr 481 . . . 4 ((𝜑𝐴 ∈ V) → Ⅎ𝑦((𝐸𝐵𝜒) → 𝐷 = 𝐹))
333, 13, 16, 19, 20, 32vtocldf 3251 . . 3 ((𝜑𝐴 ∈ V) → ((𝐸𝐵𝜒) → 𝐷 = 𝐹))
343, 5, 33mp2and 714 . 2 ((𝜑𝐴 ∈ V) → 𝐷 = 𝐹)
351, 34sylan2 491 1 ((𝜑𝐴𝑉) → 𝐷 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wnf 1706  wcel 1988  wnfc 2749  wral 2909  Vcvv 3195  crio 6595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-riotaBAD 34058
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-iota 5839  df-fun 5878  df-fv 5884  df-riota 6596  df-undef 7384
This theorem is referenced by:  riotasv2s  34063  cdleme42b  35585
  Copyright terms: Public domain W3C validator