Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasvd Structured version   Visualization version   GIF version

Theorem riotasvd 36084
Description: Deduction version of riotasv 36087. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riotasvd.1 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
riotasvd.2 (𝜑𝐷𝐴)
Assertion
Ref Expression
riotasvd ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem riotasvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 riotasvd.1 . . . . . . . . 9 (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
21adantr 483 . . . . . . . 8 ((𝜑𝐴𝑉) → 𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))
3 riotasvd.2 . . . . . . . . 9 (𝜑𝐷𝐴)
43adantr 483 . . . . . . . 8 ((𝜑𝐴𝑉) → 𝐷𝐴)
52, 4eqeltrrd 2912 . . . . . . 7 ((𝜑𝐴𝑉) → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴)
6 riotaclbgBAD 36082 . . . . . . . 8 (𝐴𝑉 → (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴))
76adantl 484 . . . . . . 7 ((𝜑𝐴𝑉) → (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴))
85, 7mpbird 259 . . . . . 6 ((𝜑𝐴𝑉) → ∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
9 riotasbc 7124 . . . . . 6 (∃!𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶) → [(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶))
108, 9syl 17 . . . . 5 ((𝜑𝐴𝑉) → [(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶))
11 eqeq1 2823 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = 𝐶𝑧 = 𝐶))
1211imbi2d 343 . . . . . . . 8 (𝑥 = 𝑧 → ((𝜓𝑥 = 𝐶) ↔ (𝜓𝑧 = 𝐶)))
1312ralbidv 3195 . . . . . . 7 (𝑥 = 𝑧 → (∀𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓𝑧 = 𝐶)))
14 nfra1 3217 . . . . . . . . . 10 𝑦𝑦𝐵 (𝜓𝑥 = 𝐶)
15 nfcv 2975 . . . . . . . . . 10 𝑦𝐴
1614, 15nfriota 7118 . . . . . . . . 9 𝑦(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
1716nfeq2 2993 . . . . . . . 8 𝑦 𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶))
18 eqeq1 2823 . . . . . . . . 9 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → (𝑧 = 𝐶 ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
1918imbi2d 343 . . . . . . . 8 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → ((𝜓𝑧 = 𝐶) ↔ (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2017, 19ralbid 3229 . . . . . . 7 (𝑧 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) → (∀𝑦𝐵 (𝜓𝑧 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2113, 20sbcie2g 3809 . . . . . 6 ((𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) ∈ 𝐴 → ([(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
225, 21syl 17 . . . . 5 ((𝜑𝐴𝑉) → ([(𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) / 𝑥]𝑦𝐵 (𝜓𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2310, 22mpbid 234 . . . 4 ((𝜑𝐴𝑉) → ∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
24 rsp 3203 . . . 4 (∀𝑦𝐵 (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶) → (𝑦𝐵 → (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2523, 24syl 17 . . 3 ((𝜑𝐴𝑉) → (𝑦𝐵 → (𝜓 → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶)))
2625impd 413 . 2 ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
272eqeq1d 2821 . 2 ((𝜑𝐴𝑉) → (𝐷 = 𝐶 ↔ (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)) = 𝐶))
2826, 27sylibrd 261 1 ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  ∃!wreu 3138  [wsbc 3770  crio 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-riotaBAD 36081
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-riota 7106  df-undef 7931
This theorem is referenced by:  riotasv2d  36085  riotasv  36087  riotasv3d  36088  cdleme32a  37569
  Copyright terms: Public domain W3C validator