MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp3 Structured version   Visualization version   GIF version

Theorem rlimcnp3 24628
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp3.c (𝜑𝐶 ∈ ℂ)
rlimcnp3.r ((𝜑𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ)
rlimcnp3.s (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
rlimcnp3.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp3.k 𝐾 = (𝐽t (0[,)+∞))
Assertion
Ref Expression
rlimcnp3 (𝜑 → ((𝑦 ∈ ℝ+𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp3
StepHypRef Expression
1 ssid 3609 . . 3 (0[,)+∞) ⊆ (0[,)+∞)
21a1i 11 . 2 (𝜑 → (0[,)+∞) ⊆ (0[,)+∞))
3 0e0icopnf 12240 . . 3 0 ∈ (0[,)+∞)
43a1i 11 . 2 (𝜑 → 0 ∈ (0[,)+∞))
5 rpssre 11803 . . 3 + ⊆ ℝ
65a1i 11 . 2 (𝜑 → ℝ+ ⊆ ℝ)
7 rlimcnp3.c . 2 (𝜑𝐶 ∈ ℂ)
8 rlimcnp3.r . 2 ((𝜑𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ)
9 simpr 477 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
10 rpreccl 11817 . . . . . 6 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
1110adantl 482 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+)
1211rpred 11832 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ)
1311rpge0d 11836 . . . 4 ((𝜑𝑦 ∈ ℝ+) → 0 ≤ (1 / 𝑦))
14 elrege0 12236 . . . 4 ((1 / 𝑦) ∈ (0[,)+∞) ↔ ((1 / 𝑦) ∈ ℝ ∧ 0 ≤ (1 / 𝑦)))
1512, 13, 14sylanbrc 697 . . 3 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ (0[,)+∞))
169, 152thd 255 . 2 ((𝜑𝑦 ∈ ℝ+) → (𝑦 ∈ ℝ+ ↔ (1 / 𝑦) ∈ (0[,)+∞)))
17 rlimcnp3.s . 2 (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
18 rlimcnp3.j . 2 𝐽 = (TopOpen‘ℂfld)
19 rlimcnp3.k . 2 𝐾 = (𝐽t (0[,)+∞))
202, 4, 6, 7, 8, 16, 17, 18, 19rlimcnp2 24627 1 (𝜑 → ((𝑦 ∈ ℝ+𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wss 3560  ifcif 4064   class class class wbr 4623  cmpt 4683  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896  1c1 9897  +∞cpnf 10031  cle 10035   / cdiv 10644  +crp 11792  [,)cico 12135  𝑟 crli 14166  t crest 16021  TopOpenctopn 16022  fldccnfld 19686   CnP ccnp 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ico 12139  df-fz 12285  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-rlim 14170  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-mulr 15895  df-starv 15896  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-rest 16023  df-topn 16024  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-cnfld 19687  df-top 20639  df-topon 20656  df-bases 20690  df-cnp 20972
This theorem is referenced by:  efrlim  24630
  Copyright terms: Public domain W3C validator