MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimcnp3 Structured version   Visualization version   GIF version

Theorem rlimcnp3 25539
Description: Relate a limit of a real-valued sequence at infinity to the continuity of the function 𝑆(𝑦) = 𝑅(1 / 𝑦) at zero. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
rlimcnp3.c (𝜑𝐶 ∈ ℂ)
rlimcnp3.r ((𝜑𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ)
rlimcnp3.s (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
rlimcnp3.j 𝐽 = (TopOpen‘ℂfld)
rlimcnp3.k 𝐾 = (𝐽t (0[,)+∞))
Assertion
Ref Expression
rlimcnp3 (𝜑 → ((𝑦 ∈ ℝ+𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝜑,𝑥,𝑦   𝑦,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥)   𝑆(𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem rlimcnp3
StepHypRef Expression
1 ssidd 3989 . 2 (𝜑 → (0[,)+∞) ⊆ (0[,)+∞))
2 0e0icopnf 12840 . . 3 0 ∈ (0[,)+∞)
32a1i 11 . 2 (𝜑 → 0 ∈ (0[,)+∞))
4 rpssre 12390 . . 3 + ⊆ ℝ
54a1i 11 . 2 (𝜑 → ℝ+ ⊆ ℝ)
6 rlimcnp3.c . 2 (𝜑𝐶 ∈ ℂ)
7 rlimcnp3.r . 2 ((𝜑𝑦 ∈ ℝ+) → 𝑆 ∈ ℂ)
8 simpr 487 . . 3 ((𝜑𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
9 rpreccl 12409 . . . . . 6 (𝑦 ∈ ℝ+ → (1 / 𝑦) ∈ ℝ+)
109adantl 484 . . . . 5 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ+)
1110rpred 12425 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ ℝ)
1210rpge0d 12429 . . . 4 ((𝜑𝑦 ∈ ℝ+) → 0 ≤ (1 / 𝑦))
13 elrege0 12836 . . . 4 ((1 / 𝑦) ∈ (0[,)+∞) ↔ ((1 / 𝑦) ∈ ℝ ∧ 0 ≤ (1 / 𝑦)))
1411, 12, 13sylanbrc 585 . . 3 ((𝜑𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ (0[,)+∞))
158, 142thd 267 . 2 ((𝜑𝑦 ∈ ℝ+) → (𝑦 ∈ ℝ+ ↔ (1 / 𝑦) ∈ (0[,)+∞)))
16 rlimcnp3.s . 2 (𝑦 = (1 / 𝑥) → 𝑆 = 𝑅)
17 rlimcnp3.j . 2 𝐽 = (TopOpen‘ℂfld)
18 rlimcnp3.k . 2 𝐾 = (𝐽t (0[,)+∞))
191, 3, 5, 6, 7, 15, 16, 17, 18rlimcnp2 25538 1 (𝜑 → ((𝑦 ∈ ℝ+𝑆) ⇝𝑟 𝐶 ↔ (𝑥 ∈ (0[,)+∞) ↦ if(𝑥 = 0, 𝐶, 𝑅)) ∈ ((𝐾 CnP 𝐽)‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wss 3935  ifcif 4466   class class class wbr 5058  cmpt 5138  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532  +∞cpnf 10666  cle 10670   / cdiv 11291  +crp 12383  [,)cico 12734  𝑟 crli 14836  t crest 16688  TopOpenctopn 16689  fldccnfld 20539   CnP ccnp 21827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-fz 12887  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-rlim 14840  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-rest 16690  df-topn 16691  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-bases 21548  df-cnp 21830
This theorem is referenced by:  efrlim  25541
  Copyright terms: Public domain W3C validator