Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimno1 Structured version   Visualization version   GIF version

Theorem rlimno1 14428
 Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
rlimno1.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimno1.2 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
rlimno1.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimno1.4 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
rlimno1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimno1
Dummy variables 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fal 1530 . . . 4 ¬ ⊥
2 rlimno1.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3 rlimno1.4 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
42, 3reccld 10832 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
54ralrimiva 2995 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
65adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
7 simpr 476 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
8 1re 10077 . . . . . . . . 9 1 ∈ ℝ
9 ifcl 4163 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
107, 8, 9sylancl 695 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
11 1rp 11874 . . . . . . . . 9 1 ∈ ℝ+
1211a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℝ+)
13 max1 12054 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
148, 7, 13sylancr 696 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
1510, 12, 14rpgecld 11949 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
1615rpreccld 11920 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ+)
17 rlimno1.2 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
1817adantr 480 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
196, 16, 18rlimi 14288 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
20 dmmptg 5670 . . . . . . . . . 10 (∀𝑥𝐴 (1 / 𝐵) ∈ ℂ → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
215, 20syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
22 rlimss 14277 . . . . . . . . . 10 ((𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2317, 22syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2421, 23eqsstr3d 3673 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
2524adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐴 ⊆ ℝ)
26 rexanre 14130 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
2725, 26syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
28 rlimno1.1 . . . . . . . . 9 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
29 ressxr 10121 . . . . . . . . . . 11 ℝ ⊆ ℝ*
3024, 29syl6ss 3648 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ*)
31 supxrunb1 12187 . . . . . . . . . 10 (𝐴 ⊆ ℝ* → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3328, 32mpbird 247 . . . . . . . 8 (𝜑 → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
3433adantr 480 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
35 r19.29 3101 . . . . . . . 8 ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
36 r19.29r 3102 . . . . . . . . . 10 ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
372adantlr 751 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
383adantlr 751 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ≠ 0)
3937, 38absrpcld 14231 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ+)
4039adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ+)
4115ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
428a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℝ)
43 0le1 10589 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 1
4443a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 0 ≤ 1)
4540rpred 11910 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ)
467ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ∈ ℝ)
4710ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
48 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ 𝑦)
49 max2 12056 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
508, 46, 49sylancr 696 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
5145, 46, 47, 48, 50letrd 10232 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ if(1 ≤ 𝑦, 𝑦, 1))
5240, 41, 42, 44, 51lediv2ad 11932 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ≤ (1 / (abs‘𝐵)))
5341rprecred 11921 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ)
5440rprecred 11921 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / (abs‘𝐵)) ∈ ℝ)
5553, 54lenltd 10221 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((1 / if(1 ≤ 𝑦, 𝑦, 1)) ≤ (1 / (abs‘𝐵)) ↔ ¬ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
5652, 55mpbid 222 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
5737adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ∈ ℂ)
5838adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ≠ 0)
5957, 58reccld 10832 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / 𝐵) ∈ ℂ)
6059subid1d 10419 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((1 / 𝐵) − 0) = (1 / 𝐵))
6160fveq2d 6233 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (abs‘(1 / 𝐵)))
62 1cnd 10094 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℂ)
6362, 57, 58absdivd 14238 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘(1 / 𝐵)) = ((abs‘1) / (abs‘𝐵)))
6442, 44absidd 14205 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘1) = 1)
6564oveq1d 6705 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘1) / (abs‘𝐵)) = (1 / (abs‘𝐵)))
6661, 63, 653eqtrd 2689 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (1 / (abs‘𝐵)))
6766breq1d 4695 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ↔ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
6856, 67mtbird 314 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
6968pm2.21d 118 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) → ⊥))
7069expimpd 628 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘𝐵) ≤ 𝑦 ∧ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) → ⊥))
7170ancomsd 469 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦) → ⊥))
7271imim2d 57 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → (𝑐𝑥 → ⊥)))
7372com23 86 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑐𝑥 → ((𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → ⊥)))
7473impd 446 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7574rexlimdva 3060 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7636, 75syl5 34 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7776rexlimdvw 3063 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7835, 77syl5 34 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7934, 78mpand 711 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → ⊥))
8027, 79sylbird 250 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)) → ⊥))
8119, 80mpand 711 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) → ⊥))
821, 81mtoi 190 . . 3 ((𝜑𝑦 ∈ ℝ) → ¬ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8382nrexdv 3030 . 2 (𝜑 → ¬ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8424, 2elo1mpt 14309 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
85 rexcom 3128 . . 3 (∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8684, 85syl6bb 276 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
8783, 86mtbird 314 1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  ⊥wfal 1528   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942   ⊆ wss 3607  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143  ‘cfv 5926  (class class class)co 6690  supcsup 8387  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975  +∞cpnf 10109  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  ℝ+crp 11870  abscabs 14018   ⇝𝑟 crli 14260  𝑂(1)co1 14261 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-rlim 14264  df-o1 14265  df-lo1 14266 This theorem is referenced by:  logno1  24427
 Copyright terms: Public domain W3C validator