MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimuni Structured version   Visualization version   GIF version

Theorem rlimuni 14909
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1 (𝜑𝐹:𝐴⟶ℂ)
rlimuni.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimuni.3 (𝜑𝐹𝑟 𝐵)
rlimuni.4 (𝜑𝐹𝑟 𝐶)
Assertion
Ref Expression
rlimuni (𝜑𝐵 = 𝐶)

Proof of Theorem rlimuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimuni.3 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐵)
2 rlimcl 14862 . . . . . . . . . . . 12 (𝐹𝑟 𝐵𝐵 ∈ ℂ)
31, 2syl 17 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
43ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
5 rlimuni.4 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐶)
6 rlimcl 14862 . . . . . . . . . . . 12 (𝐹𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
87ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
94, 8subcld 10999 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵𝐶) ∈ ℂ)
109abscld 14798 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110ltnrd 10776 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))
12 rlimuni.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1312ffvelrnda 6853 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1413adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1514, 4abssubd 14815 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘((𝐹𝑘) − 𝐵)) = (abs‘(𝐵 − (𝐹𝑘))))
1615breq1d 5078 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ↔ (abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2)))
1716anbi1d 631 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) ↔ ((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
18 abs3lem 14700 . . . . . . . . . . 11 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐵𝐶)) ∈ ℝ)) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
194, 8, 14, 10, 18syl22anc 836 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2017, 19sylbid 242 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2120imim2d 57 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → (𝑗𝑘 → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))))
2221impcomd 414 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2311, 22mtod 200 . . . . . 6 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2423nrexdv 3272 . . . . 5 ((𝜑𝑗 ∈ ℝ) → ¬ ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
25 r19.29r 3257 . . . . 5 ((∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2624, 25nsyl 142 . . . 4 ((𝜑𝑗 ∈ ℝ) → ¬ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2726nrexdv 3272 . . 3 (𝜑 → ¬ ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
28 rlimuni.2 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2912fdmd 6525 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
30 rlimss 14861 . . . . . . . . 9 (𝐹𝑟 𝐵 → dom 𝐹 ⊆ ℝ)
311, 30syl 17 . . . . . . . 8 (𝜑 → dom 𝐹 ⊆ ℝ)
3229, 31eqsstrrd 4008 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
33 ressxr 10687 . . . . . . 7 ℝ ⊆ ℝ*
3432, 33sstrdi 3981 . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
35 supxrunb1 12715 . . . . . 6 (𝐴 ⊆ ℝ* → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3634, 35syl 17 . . . . 5 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3728, 36mpbird 259 . . . 4 (𝜑 → ∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘)
38 r19.29 3256 . . . . 5 ((∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
3938ex 415 . . . 4 (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4037, 39syl 17 . . 3 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4127, 40mtod 200 . 2 (𝜑 → ¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
4212adantr 483 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹:𝐴⟶ℂ)
43 ffvelrn 6851 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
4443ralrimiva 3184 . . . . . . 7 (𝐹:𝐴⟶ℂ → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
4542, 44syl 17 . . . . . 6 ((𝜑𝐵𝐶) → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
463adantr 483 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ ℂ)
477adantr 483 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐶 ∈ ℂ)
4846, 47subcld 10999 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ∈ ℂ)
49 simpr 487 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵𝐶)
5046, 47, 49subne0d 11008 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ≠ 0)
5148, 50absrpcld 14810 . . . . . . 7 ((𝜑𝐵𝐶) → (abs‘(𝐵𝐶)) ∈ ℝ+)
5251rphalfcld 12446 . . . . . 6 ((𝜑𝐵𝐶) → ((abs‘(𝐵𝐶)) / 2) ∈ ℝ+)
5342feqmptd 6735 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
541adantr 483 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐵)
5553, 54eqbrtrrd 5092 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐵)
5645, 52, 55rlimi 14872 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)))
575adantr 483 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐶)
5853, 57eqbrtrrd 5092 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐶)
5945, 52, 58rlimi 14872 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))
6032adantr 483 . . . . . 6 ((𝜑𝐵𝐶) → 𝐴 ⊆ ℝ)
61 rexanre 14708 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6260, 61syl 17 . . . . 5 ((𝜑𝐵𝐶) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6356, 59, 62mpbir2and 711 . . . 4 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
6463ex 415 . . 3 (𝜑 → (𝐵𝐶 → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6564necon1bd 3036 . 2 (𝜑 → (¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → 𝐵 = 𝐶))
6641, 65mpd 15 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  wss 3938   class class class wbr 5068  cmpt 5148  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  supcsup 8906  cc 10537  cr 10538  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  2c2 11695  abscabs 14595  𝑟 crli 14844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-rlim 14848
This theorem is referenced by:  rlimdm  14910  rlimdmafv  43383  rlimdmafv2  43464
  Copyright terms: Public domain W3C validator