MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmo5 Structured version   Visualization version   GIF version

Theorem rmo5 3155
Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmo5 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))

Proof of Theorem rmo5
StepHypRef Expression
1 df-mo 2474 . 2 (∃*𝑥(𝑥𝐴𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
2 df-rmo 2916 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
3 df-rex 2914 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-reu 2915 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
53, 4imbi12i 340 . 2 ((∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) → ∃!𝑥(𝑥𝐴𝜑)))
61, 2, 53bitr4i 292 1 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wex 1701  wcel 1987  ∃!weu 2469  ∃*wmo 2470  wrex 2909  ∃!wreu 2910  ∃*wrmo 2911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-mo 2474  df-rex 2914  df-reu 2915  df-rmo 2916
This theorem is referenced by:  nrexrmo  3156  cbvrmo  3162  ddemeas  30122  2reurex  40515  iccpartdisj  40701
  Copyright terms: Public domain W3C validator