![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmobii | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rmobii | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | rmobiia 3162 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2030 ∃*wrmo 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-eu 2502 df-mo 2503 df-rmo 2949 |
This theorem is referenced by: reuxfr2d 4921 brdom7disj 9391 reuxfr3d 29456 cvmlift2lem13 31423 nomaxmo 31972 ineccnvmo 34262 2reu5a 41498 |
Copyright terms: Public domain | W3C validator |