![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmoeq | Structured version Visualization version GIF version |
Description: Equality's restricted existential "at most one" property. (Contributed by Thierry Arnoux, 30-Mar-2018.) (Revised by AV, 27-Oct-2020.) (Proof shortened by NM, 29-Oct-2020.) |
Ref | Expression |
---|---|
rmoeq | ⊢ ∃*𝑥 ∈ 𝐵 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 3415 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
2 | 1 | moani 2554 | . 2 ⊢ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) |
3 | df-rmo 2949 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
4 | 2, 3 | mpbir 221 | 1 ⊢ ∃*𝑥 ∈ 𝐵 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃*wmo 2499 ∃*wrmo 2944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-rmo 2949 df-v 3233 |
This theorem is referenced by: nbusgredgeu 26312 |
Copyright terms: Public domain | W3C validator |