Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoimi2 Structured version   Visualization version   GIF version

Theorem rmoimi2 3391
 Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoimi2.1 𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
rmoimi2 (∃*𝑥𝐵 𝜓 → ∃*𝑥𝐴 𝜑)

Proof of Theorem rmoimi2
StepHypRef Expression
1 rmoimi2.1 . . 3 𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
2 moim 2518 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜓)) → (∃*𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
31, 2ax-mp 5 . 2 (∃*𝑥(𝑥𝐵𝜓) → ∃*𝑥(𝑥𝐴𝜑))
4 df-rmo 2915 . 2 (∃*𝑥𝐵 𝜓 ↔ ∃*𝑥(𝑥𝐵𝜓))
5 df-rmo 2915 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
63, 4, 53imtr4i 281 1 (∃*𝑥𝐵 𝜓 → ∃*𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  ∀wal 1478   ∈ wcel 1987  ∃*wmo 2470  ∃*wrmo 2910 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-eu 2473  df-mo 2474  df-rmo 2915 This theorem is referenced by:  disjin  29241  disjin2  29242
 Copyright terms: Public domain W3C validator