Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmoxfrdOLD Structured version   Visualization version   GIF version

Theorem rmoxfrdOLD 29459
Description: Transfer "at most one" restricted quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Thierry Arnoux, 7-Apr-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rmoxfrd.1 ((𝜑𝑦𝐶) → 𝐴𝐵)
rmoxfrd.2 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
rmoxfrd.3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rmoxfrdOLD (𝜑 → (∃*𝑥(𝑥𝐵𝜓) ↔ ∃*𝑦(𝑦𝐶𝜒)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem rmoxfrdOLD
StepHypRef Expression
1 rmoxfrd.1 . . . . 5 ((𝜑𝑦𝐶) → 𝐴𝐵)
2 rmoxfrd.2 . . . . . 6 ((𝜑𝑥𝐵) → ∃!𝑦𝐶 𝑥 = 𝐴)
3 reurex 3190 . . . . . 6 (∃!𝑦𝐶 𝑥 = 𝐴 → ∃𝑦𝐶 𝑥 = 𝐴)
42, 3syl 17 . . . . 5 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
5 rmoxfrd.3 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
61, 4, 5rexxfrd 4911 . . . 4 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
7 df-rex 2947 . . . 4 (∃𝑥𝐵 𝜓 ↔ ∃𝑥(𝑥𝐵𝜓))
8 df-rex 2947 . . . 4 (∃𝑦𝐶 𝜒 ↔ ∃𝑦(𝑦𝐶𝜒))
96, 7, 83bitr3g 302 . . 3 (𝜑 → (∃𝑥(𝑥𝐵𝜓) ↔ ∃𝑦(𝑦𝐶𝜒)))
101, 2, 5reuxfr4d 29457 . . . 4 (𝜑 → (∃!𝑥𝐵 𝜓 ↔ ∃!𝑦𝐶 𝜒))
11 df-reu 2948 . . . 4 (∃!𝑥𝐵 𝜓 ↔ ∃!𝑥(𝑥𝐵𝜓))
12 df-reu 2948 . . . 4 (∃!𝑦𝐶 𝜒 ↔ ∃!𝑦(𝑦𝐶𝜒))
1310, 11, 123bitr3g 302 . . 3 (𝜑 → (∃!𝑥(𝑥𝐵𝜓) ↔ ∃!𝑦(𝑦𝐶𝜒)))
149, 13imbi12d 333 . 2 (𝜑 → ((∃𝑥(𝑥𝐵𝜓) → ∃!𝑥(𝑥𝐵𝜓)) ↔ (∃𝑦(𝑦𝐶𝜒) → ∃!𝑦(𝑦𝐶𝜒))))
15 df-mo 2503 . 2 (∃*𝑥(𝑥𝐵𝜓) ↔ (∃𝑥(𝑥𝐵𝜓) → ∃!𝑥(𝑥𝐵𝜓)))
16 df-mo 2503 . 2 (∃*𝑦(𝑦𝐶𝜒) ↔ (∃𝑦(𝑦𝐶𝜒) → ∃!𝑦(𝑦𝐶𝜒)))
1714, 15, 163bitr4g 303 1 (𝜑 → (∃*𝑥(𝑥𝐵𝜓) ↔ ∃*𝑦(𝑦𝐶𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  ∃!weu 2498  ∃*wmo 2499  wrex 2942  ∃!wreu 2943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-v 3233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator