Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxdioph Structured version   Visualization version   GIF version

Theorem rmxdioph 37063
Description: X is a Diophantine function. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
rmxdioph {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)

Proof of Theorem rmxdioph
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘1) ∈ (ℤ‘2))
2 elmapi 7823 . . . . . . . 8 (𝑎 ∈ (ℕ0𝑚 (1...3)) → 𝑎:(1...3)⟶ℕ0)
3 df-3 11024 . . . . . . . . . 10 3 = (2 + 1)
4 ssid 3603 . . . . . . . . . 10 (1...3) ⊆ (1...3)
53, 4jm2.27dlem5 37060 . . . . . . . . 9 (1...2) ⊆ (1...3)
6 2nn 11129 . . . . . . . . . 10 2 ∈ ℕ
76jm2.27dlem3 37058 . . . . . . . . 9 2 ∈ (1...2)
85, 7sselii 3580 . . . . . . . 8 2 ∈ (1...3)
9 ffvelrn 6313 . . . . . . . 8 ((𝑎:(1...3)⟶ℕ0 ∧ 2 ∈ (1...3)) → (𝑎‘2) ∈ ℕ0)
102, 8, 9sylancl 693 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘2) ∈ ℕ0)
1110adantr 481 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘2) ∈ ℕ0)
12 3nn 11130 . . . . . . . . 9 3 ∈ ℕ
1312jm2.27dlem3 37058 . . . . . . . 8 3 ∈ (1...3)
14 ffvelrn 6313 . . . . . . . 8 ((𝑎:(1...3)⟶ℕ0 ∧ 3 ∈ (1...3)) → (𝑎‘3) ∈ ℕ0)
152, 13, 14sylancl 693 . . . . . . 7 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (𝑎‘3) ∈ ℕ0)
1615adantr 481 . . . . . 6 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → (𝑎‘3) ∈ ℕ0)
17 rmxdiophlem 37062 . . . . . 6 (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘2) ∈ ℕ0 ∧ (𝑎‘3) ∈ ℕ0) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
181, 11, 16, 17syl3anc 1323 . . . . 5 ((𝑎 ∈ (ℕ0𝑚 (1...3)) ∧ (𝑎‘1) ∈ (ℤ‘2)) → ((𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)) ↔ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
1918pm5.32da 672 . . . 4 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1))))
20 anass 680 . . . . . 6 ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2120rexbii 3034 . . . . 5 (∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ ∃𝑏 ∈ ℕ0 ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
22 r19.42v 3084 . . . . 5 (∃𝑏 ∈ ℕ0 ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)) ↔ ((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2321, 22bitr2i 265 . . . 4 (((𝑎‘1) ∈ (ℤ‘2) ∧ ∃𝑏 ∈ ℕ0 (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)) ↔ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1))
2419, 23syl6bb 276 . . 3 (𝑎 ∈ (ℕ0𝑚 (1...3)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2))) ↔ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)))
2524rabbiia 3173 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} = {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)}
26 3nn0 11254 . . 3 3 ∈ ℕ0
27 vex 3189 . . . . . . . 8 𝑐 ∈ V
2827resex 5402 . . . . . . 7 (𝑐 ↾ (1...3)) ∈ V
29 fvex 6158 . . . . . . 7 (𝑐‘4) ∈ V
30 df-2 11023 . . . . . . . . . . . . . 14 2 = (1 + 1)
3130, 5jm2.27dlem5 37060 . . . . . . . . . . . . 13 (1...1) ⊆ (1...3)
32 1nn 10975 . . . . . . . . . . . . . 14 1 ∈ ℕ
3332jm2.27dlem3 37058 . . . . . . . . . . . . 13 1 ∈ (1...1)
3431, 33sselii 3580 . . . . . . . . . . . 12 1 ∈ (1...3)
3534jm2.27dlem1 37056 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘1) = (𝑐‘1))
3635eleq1d 2683 . . . . . . . . . 10 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
3736adantr 481 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
38 simpr 477 . . . . . . . . . 10 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → 𝑏 = (𝑐‘4))
398jm2.27dlem1 37056 . . . . . . . . . . . 12 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘2) = (𝑐‘2))
4035, 39oveq12d 6622 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
4140adantr 481 . . . . . . . . . 10 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘1) Yrm (𝑎‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
4238, 41eqeq12d 2636 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (𝑏 = ((𝑎‘1) Yrm (𝑎‘2)) ↔ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))))
4337, 42anbi12d 746 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ↔ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))))
4413jm2.27dlem1 37056 . . . . . . . . . . . 12 (𝑎 = (𝑐 ↾ (1...3)) → (𝑎‘3) = (𝑐‘3))
4544oveq1d 6619 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘3)↑2) = ((𝑐‘3)↑2))
4645adantr 481 . . . . . . . . . 10 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((𝑎‘3)↑2) = ((𝑐‘3)↑2))
4735oveq1d 6619 . . . . . . . . . . . 12 (𝑎 = (𝑐 ↾ (1...3)) → ((𝑎‘1)↑2) = ((𝑐‘1)↑2))
4847oveq1d 6619 . . . . . . . . . . 11 (𝑎 = (𝑐 ↾ (1...3)) → (((𝑎‘1)↑2) − 1) = (((𝑐‘1)↑2) − 1))
49 oveq1 6611 . . . . . . . . . . 11 (𝑏 = (𝑐‘4) → (𝑏↑2) = ((𝑐‘4)↑2))
5048, 49oveqan12d 6623 . . . . . . . . . 10 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘1)↑2) − 1) · (𝑏↑2)) = ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))
5146, 50oveq12d 6622 . . . . . . . . 9 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))))
5251eqeq1d 2623 . . . . . . . 8 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1 ↔ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1))
5343, 52anbi12d 746 . . . . . . 7 ((𝑎 = (𝑐 ↾ (1...3)) ∧ 𝑏 = (𝑐‘4)) → ((((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)))
5428, 29, 53sbc2ie 3487 . . . . . 6 ([(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1))
5554a1i 11 . . . . 5 (𝑐 ∈ (ℕ0𝑚 (1...4)) → ([(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1) ↔ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)))
5655rabbiia 3173 . . . 4 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} = {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)}
57 4nn0 11255 . . . . . 6 4 ∈ ℕ0
58 rmydioph 37061 . . . . . 6 {𝑏 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)
59 simp1 1059 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘1) = (𝑐‘1))
6059eleq1d 2683 . . . . . . . 8 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘1) ∈ (ℤ‘2) ↔ (𝑐‘1) ∈ (ℤ‘2)))
61 simp3 1061 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘3) = (𝑐‘4))
62 simp2 1060 . . . . . . . . . 10 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (𝑏‘2) = (𝑐‘2))
6359, 62oveq12d 6622 . . . . . . . . 9 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘1) Yrm (𝑏‘2)) = ((𝑐‘1) Yrm (𝑐‘2)))
6461, 63eqeq12d 2636 . . . . . . . 8 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → ((𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)) ↔ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))))
6560, 64anbi12d 746 . . . . . . 7 (((𝑏‘1) = (𝑐‘1) ∧ (𝑏‘2) = (𝑐‘2) ∧ (𝑏‘3) = (𝑐‘4)) → (((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2))) ↔ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))))
66 df-4 11025 . . . . . . . . . . 11 4 = (3 + 1)
67 ssid 3603 . . . . . . . . . . 11 (1...4) ⊆ (1...4)
6866, 67jm2.27dlem5 37060 . . . . . . . . . 10 (1...3) ⊆ (1...4)
693, 68jm2.27dlem5 37060 . . . . . . . . 9 (1...2) ⊆ (1...4)
7030, 69jm2.27dlem5 37060 . . . . . . . 8 (1...1) ⊆ (1...4)
7170, 33sselii 3580 . . . . . . 7 1 ∈ (1...4)
7269, 7sselii 3580 . . . . . . 7 2 ∈ (1...4)
73 4nn 11131 . . . . . . . 8 4 ∈ ℕ
7473jm2.27dlem3 37058 . . . . . . 7 4 ∈ (1...4)
7565, 71, 72, 74rabren3dioph 36859 . . . . . 6 ((4 ∈ ℕ0 ∧ {𝑏 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑏‘1) ∈ (ℤ‘2) ∧ (𝑏‘3) = ((𝑏‘1) Yrm (𝑏‘2)))} ∈ (Dioph‘3)) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4))
7657, 58, 75mp2an 707 . . . . 5 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4)
77 ovex 6632 . . . . . . . . 9 (1...4) ∈ V
7868, 13sselii 3580 . . . . . . . . 9 3 ∈ (1...4)
79 mzpproj 36780 . . . . . . . . 9 (((1...4) ∈ V ∧ 3 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4)))
8077, 78, 79mp2an 707 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4))
81 2nn0 11253 . . . . . . . 8 2 ∈ ℕ0
82 mzpexpmpt 36788 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘3)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4)))
8380, 81, 82mp2an 707 . . . . . . 7 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4))
84 mzpproj 36780 . . . . . . . . . . 11 (((1...4) ∈ V ∧ 1 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4)))
8577, 71, 84mp2an 707 . . . . . . . . . 10 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4))
86 mzpexpmpt 36788 . . . . . . . . . 10 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘1)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4)))
8785, 81, 86mp2an 707 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4))
88 1z 11351 . . . . . . . . . 10 1 ∈ ℤ
89 mzpconstmpt 36783 . . . . . . . . . 10 (((1...4) ∈ V ∧ 1 ∈ ℤ) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4)))
9077, 88, 89mp2an 707 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))
91 mzpsubmpt 36786 . . . . . . . . 9 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘1)↑2)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4)))
9287, 90, 91mp2an 707 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4))
93 mzpproj 36780 . . . . . . . . . 10 (((1...4) ∈ V ∧ 4 ∈ (1...4)) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4)))
9477, 74, 93mp2an 707 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4))
95 mzpexpmpt 36788 . . . . . . . . 9 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (𝑐‘4)) ∈ (mzPoly‘(1...4)) ∧ 2 ∈ ℕ0) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4)))
9694, 81, 95mp2an 707 . . . . . . . 8 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4))
97 mzpmulmpt 36785 . . . . . . . 8 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘1)↑2) − 1)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘4)↑2)) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4)))
9892, 96, 97mp2an 707 . . . . . . 7 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4))
99 mzpsubmpt 36786 . . . . . . 7 (((𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((𝑐‘3)↑2)) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) ∈ (mzPoly‘(1...4))) → (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4)))
10083, 98, 99mp2an 707 . . . . . 6 (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4))
101 eqrabdioph 36821 . . . . . 6 ((4 ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2)))) ∈ (mzPoly‘(1...4)) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...4)) ↦ 1) ∈ (mzPoly‘(1...4))) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4))
10257, 100, 90, 101mp3an 1421 . . . . 5 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4)
103 anrabdioph 36824 . . . . 5 (({𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ ((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2)))} ∈ (Dioph‘4) ∧ {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1} ∈ (Dioph‘4)) → {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)} ∈ (Dioph‘4))
10476, 102, 103mp2an 707 . . . 4 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ (((𝑐‘1) ∈ (ℤ‘2) ∧ (𝑐‘4) = ((𝑐‘1) Yrm (𝑐‘2))) ∧ (((𝑐‘3)↑2) − ((((𝑐‘1)↑2) − 1) · ((𝑐‘4)↑2))) = 1)} ∈ (Dioph‘4)
10556, 104eqeltri 2694 . . 3 {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘4)
10666rexfrabdioph 36839 . . 3 ((3 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0𝑚 (1...4)) ∣ [(𝑐 ↾ (1...3)) / 𝑎][(𝑐‘4) / 𝑏](((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘4)) → {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘3))
10726, 105, 106mp2an 707 . 2 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ∃𝑏 ∈ ℕ0 (((𝑎‘1) ∈ (ℤ‘2) ∧ 𝑏 = ((𝑎‘1) Yrm (𝑎‘2))) ∧ (((𝑎‘3)↑2) − ((((𝑎‘1)↑2) − 1) · (𝑏↑2))) = 1)} ∈ (Dioph‘3)
10825, 107eqeltri 2694 1 {𝑎 ∈ (ℕ0𝑚 (1...3)) ∣ ((𝑎‘1) ∈ (ℤ‘2) ∧ (𝑎‘3) = ((𝑎‘1) Xrm (𝑎‘2)))} ∈ (Dioph‘3)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  {crab 2911  Vcvv 3186  [wsbc 3417  cmpt 4673  cres 5076  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  1c1 9881   · cmul 9885  cmin 10210  2c2 11014  3c3 11015  4c4 11016  0cn0 11236  cz 11321  cuz 11631  ...cfz 12268  cexp 12800  mzPolycmzp 36765  Diophcdioph 36798   Xrm crmx 36944   Yrm crmy 36945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-omul 7510  df-er 7687  df-map 7804  df-pm 7805  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-acn 8712  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-xnn0 11308  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-sin 14725  df-cos 14726  df-pi 14728  df-dvds 14908  df-gcd 15141  df-prm 15310  df-numer 15367  df-denom 15368  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-tx 21275  df-hmeo 21468  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-tms 22037  df-cncf 22589  df-limc 23536  df-dv 23537  df-log 24207  df-mzpcl 36766  df-mzp 36767  df-dioph 36799  df-squarenn 36885  df-pell1qr 36886  df-pell14qr 36887  df-pell1234qr 36888  df-pellfund 36889  df-rmx 36946  df-rmy 36947
This theorem is referenced by:  expdiophlem2  37069
  Copyright terms: Public domain W3C validator