Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxdiophlem Structured version   Visualization version   GIF version

Theorem rmxdiophlem 36490
Description: X can be expressed in terms of Y, so it is also Diophantine. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
rmxdiophlem ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑁   𝑦,𝑋

Proof of Theorem rmxdiophlem
StepHypRef Expression
1 nn0sqcl 12617 . . . . . 6 (𝑋 ∈ ℕ0 → (𝑋↑2) ∈ ℕ0)
213ad2ant3 1076 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (𝑋↑2) ∈ ℕ0)
32nn0cnd 11108 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (𝑋↑2) ∈ ℂ)
4 simp1 1053 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
5 nn0z 11141 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
653ad2ant2 1075 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → 𝑁 ∈ ℤ)
7 frmx 36386 . . . . . . . 8 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
87fovcl 6540 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
94, 6, 8syl2anc 690 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ0)
10 nn0sqcl 12617 . . . . . 6 ((𝐴 Xrm 𝑁) ∈ ℕ0 → ((𝐴 Xrm 𝑁)↑2) ∈ ℕ0)
119, 10syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑2) ∈ ℕ0)
1211nn0cnd 11108 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑2) ∈ ℂ)
13 rmspecnonsq 36380 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
1413eldifad 3456 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ)
1514nnnn0d 11106 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ0)
16153ad2ant1 1074 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ0)
17 rmynn0 36432 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℕ0)
18173adant3 1073 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℕ0)
19 nn0sqcl 12617 . . . . . . 7 ((𝐴 Yrm 𝑁) ∈ ℕ0 → ((𝐴 Yrm 𝑁)↑2) ∈ ℕ0)
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑2) ∈ ℕ0)
2116, 20nn0mulcld 11111 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)) ∈ ℕ0)
2221nn0cnd 11108 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)) ∈ ℂ)
233, 12, 22subcan2ad 10188 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) ↔ (𝑋↑2) = ((𝐴 Xrm 𝑁)↑2)))
24 rmxynorm 36391 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)
254, 6, 24syl2anc 690 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)
2625eqeq2d 2524 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1))
27 nn0re 11056 . . . . . 6 (𝑋 ∈ ℕ0𝑋 ∈ ℝ)
28 nn0ge0 11073 . . . . . 6 (𝑋 ∈ ℕ0 → 0 ≤ 𝑋)
2927, 28jca 552 . . . . 5 (𝑋 ∈ ℕ0 → (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋))
30293ad2ant3 1076 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋))
31 nn0re 11056 . . . . . 6 ((𝐴 Xrm 𝑁) ∈ ℕ0 → (𝐴 Xrm 𝑁) ∈ ℝ)
32 nn0ge0 11073 . . . . . 6 ((𝐴 Xrm 𝑁) ∈ ℕ0 → 0 ≤ (𝐴 Xrm 𝑁))
3331, 32jca 552 . . . . 5 ((𝐴 Xrm 𝑁) ∈ ℕ0 → ((𝐴 Xrm 𝑁) ∈ ℝ ∧ 0 ≤ (𝐴 Xrm 𝑁)))
349, 33syl 17 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → ((𝐴 Xrm 𝑁) ∈ ℝ ∧ 0 ≤ (𝐴 Xrm 𝑁)))
35 sq11 12666 . . . 4 (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ ((𝐴 Xrm 𝑁) ∈ ℝ ∧ 0 ≤ (𝐴 Xrm 𝑁))) → ((𝑋↑2) = ((𝐴 Xrm 𝑁)↑2) ↔ 𝑋 = (𝐴 Xrm 𝑁)))
3630, 34, 35syl2anc 690 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → ((𝑋↑2) = ((𝐴 Xrm 𝑁)↑2) ↔ 𝑋 = (𝐴 Xrm 𝑁)))
3723, 26, 363bitr3rd 297 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1))
38 oveq1 6433 . . . . . . 7 (𝑦 = (𝐴 Yrm 𝑁) → (𝑦↑2) = ((𝐴 Yrm 𝑁)↑2))
3938oveq2d 6442 . . . . . 6 (𝑦 = (𝐴 Yrm 𝑁) → (((𝐴↑2) − 1) · (𝑦↑2)) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)))
4039oveq2d 6442 . . . . 5 (𝑦 = (𝐴 Yrm 𝑁) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))))
4140eqeq1d 2516 . . . 4 (𝑦 = (𝐴 Yrm 𝑁) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1))
4241ceqsrexv 3210 . . 3 ((𝐴 Yrm 𝑁) ∈ ℕ0 → (∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1))
4318, 42syl 17 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1))
4437, 43bitr4d 269 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1938  wrex 2801   class class class wbr 4481  cfv 5689  (class class class)co 6426  cr 9690  0cc0 9691  1c1 9692   · cmul 9696  cle 9830  cmin 10017  cn 10775  2c2 10825  0cn0 11047  cz 11118  cuz 11427  cexp 12590  NNcsquarenn 36308   Xrm crmx 36372   Yrm crmy 36373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-inf2 8297  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768  ax-pre-sup 9769  ax-addf 9770  ax-mulf 9771
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-iin 4356  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-se 4892  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-isom 5698  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-of 6671  df-om 6834  df-1st 6934  df-2nd 6935  df-supp 7058  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-2o 7324  df-oadd 7327  df-omul 7328  df-er 7505  df-map 7622  df-pm 7623  df-ixp 7671  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-fsupp 8035  df-fi 8076  df-sup 8107  df-inf 8108  df-oi 8174  df-card 8524  df-acn 8527  df-cda 8749  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-div 10434  df-nn 10776  df-2 10834  df-3 10835  df-4 10836  df-5 10837  df-6 10838  df-7 10839  df-8 10840  df-9 10841  df-n0 11048  df-z 11119  df-dec 11234  df-uz 11428  df-q 11531  df-rp 11575  df-xneg 11688  df-xadd 11689  df-xmul 11690  df-ioo 11919  df-ioc 11920  df-ico 11921  df-icc 11922  df-fz 12066  df-fzo 12203  df-fl 12323  df-mod 12399  df-seq 12532  df-exp 12591  df-fac 12791  df-bc 12820  df-hash 12848  df-shft 13514  df-cj 13546  df-re 13547  df-im 13548  df-sqrt 13682  df-abs 13683  df-limsup 13910  df-clim 13933  df-rlim 13934  df-sum 14134  df-ef 14506  df-sin 14508  df-cos 14509  df-pi 14511  df-dvds 14691  df-gcd 14928  df-numer 15157  df-denom 15158  df-struct 15581  df-ndx 15582  df-slot 15583  df-base 15584  df-sets 15585  df-ress 15586  df-plusg 15665  df-mulr 15666  df-starv 15667  df-sca 15668  df-vsca 15669  df-ip 15670  df-tset 15671  df-ple 15672  df-ds 15675  df-unif 15676  df-hom 15677  df-cco 15678  df-rest 15790  df-topn 15791  df-0g 15809  df-gsum 15810  df-topgen 15811  df-pt 15812  df-prds 15815  df-xrs 15869  df-qtop 15875  df-imas 15876  df-xps 15879  df-mre 15961  df-mrc 15962  df-acs 15964  df-mgm 16957  df-sgrp 16999  df-mnd 17010  df-submnd 17051  df-mulg 17256  df-cntz 17465  df-cmn 17926  df-psmet 19463  df-xmet 19464  df-met 19465  df-bl 19466  df-mopn 19467  df-fbas 19468  df-fg 19469  df-cnfld 19472  df-top 20424  df-bases 20425  df-topon 20426  df-topsp 20427  df-cld 20536  df-ntr 20537  df-cls 20538  df-nei 20615  df-lp 20653  df-perf 20654  df-cn 20744  df-cnp 20745  df-haus 20832  df-tx 21078  df-hmeo 21271  df-fil 21363  df-fm 21455  df-flim 21456  df-flf 21457  df-xms 21837  df-ms 21838  df-tms 21839  df-cncf 22412  df-limc 23311  df-dv 23312  df-log 23994  df-squarenn 36313  df-pell1qr 36314  df-pell14qr 36315  df-pell1234qr 36316  df-pellfund 36317  df-rmx 36374  df-rmy 36375
This theorem is referenced by:  rmxdioph  36491
  Copyright terms: Public domain W3C validator