MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnelfm Structured version   Visualization version   GIF version

Theorem rnelfm 21667
Description: A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
rnelfm ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹𝐿))

Proof of Theorem rnelfm
Dummy variables 𝑏 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filtop 21569 . . . . . . 7 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
213ad2ant2 1081 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑋𝐿)
3 simp1 1059 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑌𝐴)
4 simp3 1061 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
5 fmf 21659 . . . . . 6 ((𝑋𝐿𝑌𝐴𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
62, 3, 4, 5syl3anc 1323 . . . . 5 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋))
7 ffn 6002 . . . . 5 ((𝑋 FilMap 𝐹):(fBas‘𝑌)⟶(Fil‘𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
86, 7syl 17 . . . 4 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
9 fvelrnb 6200 . . . 4 ((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿))
108, 9syl 17 . . 3 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿))
11 ffn 6002 . . . . . . . . . . . 12 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
12 dffn4 6078 . . . . . . . . . . . 12 (𝐹 Fn 𝑌𝐹:𝑌onto→ran 𝐹)
1311, 12sylib 208 . . . . . . . . . . 11 (𝐹:𝑌𝑋𝐹:𝑌onto→ran 𝐹)
14 foima 6077 . . . . . . . . . . 11 (𝐹:𝑌onto→ran 𝐹 → (𝐹𝑌) = ran 𝐹)
1513, 14syl 17 . . . . . . . . . 10 (𝐹:𝑌𝑋 → (𝐹𝑌) = ran 𝐹)
1615ad2antlr 762 . . . . . . . . 9 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹𝑌) = ran 𝐹)
17 simpll 789 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑋𝐿)
18 simpr 477 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑏 ∈ (fBas‘𝑌))
19 simplr 791 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝐹:𝑌𝑋)
20 fgcl 21592 . . . . . . . . . . . 12 (𝑏 ∈ (fBas‘𝑌) → (𝑌filGen𝑏) ∈ (Fil‘𝑌))
21 filtop 21569 . . . . . . . . . . . 12 ((𝑌filGen𝑏) ∈ (Fil‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏))
2220, 21syl 17 . . . . . . . . . . 11 (𝑏 ∈ (fBas‘𝑌) → 𝑌 ∈ (𝑌filGen𝑏))
2322adantl 482 . . . . . . . . . 10 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → 𝑌 ∈ (𝑌filGen𝑏))
24 eqid 2621 . . . . . . . . . . 11 (𝑌filGen𝑏) = (𝑌filGen𝑏)
2524imaelfm 21665 . . . . . . . . . 10 (((𝑋𝐿𝑏 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑌 ∈ (𝑌filGen𝑏)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏))
2617, 18, 19, 23, 25syl31anc 1326 . . . . . . . . 9 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (𝐹𝑌) ∈ ((𝑋 FilMap 𝐹)‘𝑏))
2716, 26eqeltrrd 2699 . . . . . . . 8 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏))
28 eleq2 2687 . . . . . . . 8 (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → (ran 𝐹 ∈ ((𝑋 FilMap 𝐹)‘𝑏) ↔ ran 𝐹𝐿))
2927, 28syl5ibcom 235 . . . . . . 7 (((𝑋𝐿𝐹:𝑌𝑋) ∧ 𝑏 ∈ (fBas‘𝑌)) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿))
3029ex 450 . . . . . 6 ((𝑋𝐿𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
311, 30sylan 488 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
32313adant1 1077 . . . 4 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) → (((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿)))
3332rexlimdv 3023 . . 3 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (∃𝑏 ∈ (fBas‘𝑌)((𝑋 FilMap 𝐹)‘𝑏) = 𝐿 → ran 𝐹𝐿))
3410, 33sylbid 230 . 2 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) → ran 𝐹𝐿))
35 simpl2 1063 . . . . . . . . 9 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 ∈ (Fil‘𝑋))
36 filelss 21566 . . . . . . . . . 10 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡𝐿) → 𝑡𝑋)
3736ex 450 . . . . . . . . 9 (𝐿 ∈ (Fil‘𝑋) → (𝑡𝐿𝑡𝑋))
3835, 37syl 17 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿𝑡𝑋))
39 simpr 477 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → 𝑡𝐿)
40 eqidd 2622 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹𝑡) = (𝐹𝑡))
41 imaeq2 5421 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
4241eqeq2d 2631 . . . . . . . . . . . . 13 (𝑥 = 𝑡 → ((𝐹𝑡) = (𝐹𝑥) ↔ (𝐹𝑡) = (𝐹𝑡)))
4342rspcev 3295 . . . . . . . . . . . 12 ((𝑡𝐿 ∧ (𝐹𝑡) = (𝐹𝑡)) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
4439, 40, 43syl2anc 692 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
45 simpl1 1062 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌𝐴)
46 cnvimass 5444 . . . . . . . . . . . . . . . . 17 (𝐹𝑡) ⊆ dom 𝐹
47 fdm 6008 . . . . . . . . . . . . . . . . 17 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
4846, 47syl5sseq 3632 . . . . . . . . . . . . . . . 16 (𝐹:𝑌𝑋 → (𝐹𝑡) ⊆ 𝑌)
49483ad2ant3 1082 . . . . . . . . . . . . . . 15 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹𝑡) ⊆ 𝑌)
5049adantr 481 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑡) ⊆ 𝑌)
5145, 50ssexd 4765 . . . . . . . . . . . . 13 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑡) ∈ V)
52 eqid 2621 . . . . . . . . . . . . . 14 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
5352elrnmpt 5332 . . . . . . . . . . . . 13 ((𝐹𝑡) ∈ V → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5451, 53syl 17 . . . . . . . . . . . 12 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5554adantr 481 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
5644, 55mpbird 247 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
57 ssid 3603 . . . . . . . . . . 11 (𝐹𝑡) ⊆ (𝐹𝑡)
58 ffun 6005 . . . . . . . . . . . . . 14 (𝐹:𝑌𝑋 → Fun 𝐹)
59583ad2ant3 1082 . . . . . . . . . . . . 13 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → Fun 𝐹)
6059ad2antrr 761 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → Fun 𝐹)
61 funimass3 6289 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ (𝐹𝑡) ⊆ dom 𝐹) → ((𝐹 “ (𝐹𝑡)) ⊆ 𝑡 ↔ (𝐹𝑡) ⊆ (𝐹𝑡)))
6260, 46, 61sylancl 693 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ((𝐹 “ (𝐹𝑡)) ⊆ 𝑡 ↔ (𝐹𝑡) ⊆ (𝐹𝑡)))
6357, 62mpbiri 248 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
64 imaeq2 5421 . . . . . . . . . . . 12 (𝑠 = (𝐹𝑡) → (𝐹𝑠) = (𝐹 “ (𝐹𝑡)))
6564sseq1d 3611 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡))
6665rspcev 3295 . . . . . . . . . 10 (((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)
6756, 63, 66syl2anc 692 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑡𝐿) → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)
6867ex 450 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 → ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡))
6938, 68jcad 555 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 → (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
7035adantr 481 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
71 vex 3189 . . . . . . . . . . . . . . 15 𝑠 ∈ V
7252elrnmpt 5332 . . . . . . . . . . . . . . 15 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
7371, 72ax-mp 5 . . . . . . . . . . . . . 14 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
74 ssid 3603 . . . . . . . . . . . . . . . . . . . . 21 (𝐹𝑥) ⊆ (𝐹𝑥)
7559ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → Fun 𝐹)
76 cnvimass 5444 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝑥) ⊆ dom 𝐹
77 funimass3 6289 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
7875, 76, 77sylancl 693 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
7974, 78mpbiri 248 . . . . . . . . . . . . . . . . . . . 20 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ⊆ 𝑥)
80 imassrn 5436 . . . . . . . . . . . . . . . . . . . 20 (𝐹 “ (𝐹𝑥)) ⊆ ran 𝐹
81 ssin 3813 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 “ (𝐹𝑥)) ⊆ 𝑥 ∧ (𝐹 “ (𝐹𝑥)) ⊆ ran 𝐹) ↔ (𝐹 “ (𝐹𝑥)) ⊆ (𝑥 ∩ ran 𝐹))
8279, 80, 81sylanblc 695 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ⊆ (𝑥 ∩ ran 𝐹))
83 elin 3774 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑧𝑥𝑧 ∈ ran 𝐹))
84 fvelrnb 6200 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐹 Fn 𝑌 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8511, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:𝑌𝑋 → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
86853ad2ant3 1082 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8786ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑦𝑌 (𝐹𝑦) = 𝑧))
8875ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → Fun 𝐹)
8988, 76jctir 560 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → (Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹))
9059ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → Fun 𝐹)
9190ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → Fun 𝐹)
92473ad2ant3 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → dom 𝐹 = 𝑌)
9392ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → dom 𝐹 = 𝑌)
9493eleq2d 2684 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑦 ∈ dom 𝐹𝑦𝑌))
9594biimpar 502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → 𝑦 ∈ dom 𝐹)
96 fvimacnv 6288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
9791, 95, 96syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
9897biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → 𝑦 ∈ (𝐹𝑥))
99 funfvima2 6447 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Fun 𝐹 ∧ (𝐹𝑥) ⊆ dom 𝐹) → (𝑦 ∈ (𝐹𝑥) → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))))
10089, 98, 99sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) ∧ (𝐹𝑦) ∈ 𝑥) → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥)))
101100ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))))
102 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ 𝑥𝑧𝑥))
103 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑧 → ((𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥)) ↔ 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
104102, 103imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑧 → (((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝐹𝑥))) ↔ (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
105101, 104syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) ∧ 𝑦𝑌) → ((𝐹𝑦) = 𝑧 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
106105rexlimdva 3024 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (∃𝑦𝑌 (𝐹𝑦) = 𝑧 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
10787, 106sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ ran 𝐹 → (𝑧𝑥𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
108107com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧𝑥 → (𝑧 ∈ ran 𝐹𝑧 ∈ (𝐹 “ (𝐹𝑥)))))
109108impd 447 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → ((𝑧𝑥𝑧 ∈ ran 𝐹) → 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
11083, 109syl5bi 232 . . . . . . . . . . . . . . . . . . . 20 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑧 ∈ (𝑥 ∩ ran 𝐹) → 𝑧 ∈ (𝐹 “ (𝐹𝑥))))
111110ssrdv 3589 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ⊆ (𝐹 “ (𝐹𝑥)))
11282, 111eqssd 3600 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) = (𝑥 ∩ ran 𝐹))
113 filin 21568 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
1141133exp 1261 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 → (ran 𝐹𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
115114com23 86 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ (Fil‘𝑋) → (ran 𝐹𝐿 → (𝑥𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
1161153ad2ant2 1081 . . . . . . . . . . . . . . . . . . . 20 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (ran 𝐹𝐿 → (𝑥𝐿 → (𝑥 ∩ ran 𝐹) ∈ 𝐿)))
117116imp31 448 . . . . . . . . . . . . . . . . . . 19 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
118117adantr 481 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
119112, 118eqeltrd 2698 . . . . . . . . . . . . . . . . 17 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)
120119exp32 630 . . . . . . . . . . . . . . . 16 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)))
121 imaeq2 5421 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝐹𝑥) → (𝐹𝑠) = (𝐹 “ (𝐹𝑥)))
122121sseq1d 3611 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑥)) ⊆ 𝑡))
123121eleq1d 2683 . . . . . . . . . . . . . . . . . 18 (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ∈ 𝐿 ↔ (𝐹 “ (𝐹𝑥)) ∈ 𝐿))
124123imbi2d 330 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝐹𝑥) → ((𝑡𝑋 → (𝐹𝑠) ∈ 𝐿) ↔ (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿)))
125122, 124imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑠 = (𝐹𝑥) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿)) ↔ ((𝐹 “ (𝐹𝑥)) ⊆ 𝑡 → (𝑡𝑋 → (𝐹 “ (𝐹𝑥)) ∈ 𝐿))))
126120, 125syl5ibrcom 237 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
127126rexlimdva 3024 . . . . . . . . . . . . . 14 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
12873, 127syl5bi 232 . . . . . . . . . . . . 13 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋 → (𝐹𝑠) ∈ 𝐿))))
129128imp44 621 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → (𝐹𝑠) ∈ 𝐿)
130 simprr 795 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝑡𝑋)
131 simprlr 802 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → (𝐹𝑠) ⊆ 𝑡)
132 filss 21567 . . . . . . . . . . . 12 ((𝐿 ∈ (Fil‘𝑋) ∧ ((𝐹𝑠) ∈ 𝐿𝑡𝑋 ∧ (𝐹𝑠) ⊆ 𝑡)) → 𝑡𝐿)
13370, 129, 130, 131, 132syl13anc 1325 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹𝑠) ⊆ 𝑡) ∧ 𝑡𝑋)) → 𝑡𝐿)
134133exp44 640 . . . . . . . . . 10 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
135134rexlimdv 3023 . . . . . . . . 9 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
136135com23 86 . . . . . . . 8 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝑋 → (∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡𝑡𝐿)))
137136impd 447 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡) → 𝑡𝐿))
13869, 137impbid 202 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
1392adantr 481 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑋𝐿)
140 rnelfmlem 21666 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
141 simpl3 1064 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐹:𝑌𝑋)
142 elfm 21661 . . . . . . 7 ((𝑋𝐿 ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
143139, 140, 141, 142syl3anc 1323 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))(𝐹𝑠) ⊆ 𝑡)))
144138, 143bitr4d 271 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑡𝐿𝑡 ∈ ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥)))))
145144eqrdv 2619 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 = ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))))
1468adantr 481 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑋 FilMap 𝐹) Fn (fBas‘𝑌))
147 fnfvelrn 6312 . . . . 5 (((𝑋 FilMap 𝐹) Fn (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌)) → ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ ran (𝑋 FilMap 𝐹))
148146, 140, 147syl2anc 692 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑋 FilMap 𝐹)‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ ran (𝑋 FilMap 𝐹))
149145, 148eqeltrd 2698 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐿 ∈ ran (𝑋 FilMap 𝐹))
150149ex 450 . 2 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (ran 𝐹𝐿𝐿 ∈ ran (𝑋 FilMap 𝐹)))
15134, 150impbid 202 1 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐿 ∈ ran (𝑋 FilMap 𝐹) ↔ ran 𝐹𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  Vcvv 3186  cin 3554  wss 3555  cmpt 4673  ccnv 5073  dom cdm 5074  ran crn 5075  cima 5077  Fun wfun 5841   Fn wfn 5842  wf 5843  ontowfo 5845  cfv 5847  (class class class)co 6604  fBascfbas 19653  filGencfg 19654  Filcfil 21559   FilMap cfm 21647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-fbas 19662  df-fg 19663  df-fil 21560  df-fm 21652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator