MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnelfmlem Structured version   Visualization version   GIF version

Theorem rnelfmlem 21505
Description: Lemma for rnelfm 21506. (Contributed by Jeff Hankins, 14-Nov-2009.)
Assertion
Ref Expression
rnelfmlem (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐿   𝑥,𝑋   𝑥,𝑌

Proof of Theorem rnelfmlem
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1058 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝐹:𝑌𝑋)
2 cnvimass 5388 . . . . . . . 8 (𝐹𝑥) ⊆ dom 𝐹
3 fdm 5947 . . . . . . . 8 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
42, 3syl5sseq 3612 . . . . . . 7 (𝐹:𝑌𝑋 → (𝐹𝑥) ⊆ 𝑌)
51, 4syl 17 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑥) ⊆ 𝑌)
6 simpl1 1056 . . . . . . 7 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌𝐴)
7 elpw2g 4746 . . . . . . 7 (𝑌𝐴 → ((𝐹𝑥) ∈ 𝒫 𝑌 ↔ (𝐹𝑥) ⊆ 𝑌))
86, 7syl 17 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝐹𝑥) ∈ 𝒫 𝑌 ↔ (𝐹𝑥) ⊆ 𝑌))
95, 8mpbird 245 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝐹𝑥) ∈ 𝒫 𝑌)
109adantr 479 . . . 4 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝐹𝑥) ∈ 𝒫 𝑌)
11 eqid 2606 . . . 4 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
1210, 11fmptd 6274 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑥𝐿 ↦ (𝐹𝑥)):𝐿⟶𝒫 𝑌)
13 frn 5949 . . 3 ((𝑥𝐿 ↦ (𝐹𝑥)):𝐿⟶𝒫 𝑌 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
1412, 13syl 17 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌)
15 filtop 21408 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
16153ad2ant2 1075 . . . . . . 7 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑋𝐿)
1716adantr 479 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑋𝐿)
18 fimacnv 6237 . . . . . . . . 9 (𝐹:𝑌𝑋 → (𝐹𝑋) = 𝑌)
1918eqcomd 2612 . . . . . . . 8 (𝐹:𝑌𝑋𝑌 = (𝐹𝑋))
20193ad2ant3 1076 . . . . . . 7 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → 𝑌 = (𝐹𝑋))
2120adantr 479 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌 = (𝐹𝑋))
22 imaeq2 5365 . . . . . . . 8 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2322eqeq2d 2616 . . . . . . 7 (𝑥 = 𝑋 → (𝑌 = (𝐹𝑥) ↔ 𝑌 = (𝐹𝑋)))
2423rspcev 3278 . . . . . 6 ((𝑋𝐿𝑌 = (𝐹𝑋)) → ∃𝑥𝐿 𝑌 = (𝐹𝑥))
2517, 21, 24syl2anc 690 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∃𝑥𝐿 𝑌 = (𝐹𝑥))
2611elrnmpt 5277 . . . . . . 7 (𝑌𝐴 → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
27263ad2ant1 1074 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
2827adantr 479 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑌 = (𝐹𝑥)))
2925, 28mpbird 245 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → 𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
30 ne0i 3876 . . . 4 (𝑌 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅)
3129, 30syl 17 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅)
32 0nelfil 21402 . . . . . . 7 (𝐿 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐿)
33323ad2ant2 1075 . . . . . 6 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → ¬ ∅ ∈ 𝐿)
3433adantr 479 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ¬ ∅ ∈ 𝐿)
35 0ex 4710 . . . . . . 7 ∅ ∈ V
3611elrnmpt 5277 . . . . . . 7 (∅ ∈ V → (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 ∅ = (𝐹𝑥)))
3735, 36ax-mp 5 . . . . . 6 (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 ∅ = (𝐹𝑥))
38 ffn 5941 . . . . . . . . . . . . . . . . . 18 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
39 fvelrnb 6135 . . . . . . . . . . . . . . . . . 18 (𝐹 Fn 𝑌 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
4038, 39syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:𝑌𝑋 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
41403ad2ant3 1076 . . . . . . . . . . . . . . . 16 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
4241ad2antrr 757 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (𝑦 ∈ ran 𝐹 ↔ ∃𝑧𝑌 (𝐹𝑧) = 𝑦))
43 eleq1 2672 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ 𝑥𝑦𝑥))
4443biimparc 502 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥 ∧ (𝐹𝑧) = 𝑦) → (𝐹𝑧) ∈ 𝑥)
4544ad2ant2l 777 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝐿𝑦𝑥) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → (𝐹𝑧) ∈ 𝑥)
4645adantll 745 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → (𝐹𝑧) ∈ 𝑥)
47 ffun 5944 . . . . . . . . . . . . . . . . . . . . 21 (𝐹:𝑌𝑋 → Fun 𝐹)
48473ad2ant3 1076 . . . . . . . . . . . . . . . . . . . 20 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → Fun 𝐹)
4948ad3antrrr 761 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → Fun 𝐹)
503eleq2d 2669 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:𝑌𝑋 → (𝑧 ∈ dom 𝐹𝑧𝑌))
5150biimpar 500 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹:𝑌𝑋𝑧𝑌) → 𝑧 ∈ dom 𝐹)
52513ad2antl3 1217 . . . . . . . . . . . . . . . . . . . . 21 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ 𝑧𝑌) → 𝑧 ∈ dom 𝐹)
5352adantlr 746 . . . . . . . . . . . . . . . . . . . 20 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑧𝑌) → 𝑧 ∈ dom 𝐹)
5453ad2ant2r 778 . . . . . . . . . . . . . . . . . . 19 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ dom 𝐹)
55 fvimacnv 6222 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝐹𝑧 ∈ dom 𝐹) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
5649, 54, 55syl2anc 690 . . . . . . . . . . . . . . . . . 18 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → ((𝐹𝑧) ∈ 𝑥𝑧 ∈ (𝐹𝑥)))
5746, 56mpbid 220 . . . . . . . . . . . . . . . . 17 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → 𝑧 ∈ (𝐹𝑥))
58 n0i 3875 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐹𝑥) → ¬ (𝐹𝑥) = ∅)
59 eqcom 2613 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = ∅ ↔ ∅ = (𝐹𝑥))
6058, 59sylnib 316 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝐹𝑥) → ¬ ∅ = (𝐹𝑥))
6157, 60syl 17 . . . . . . . . . . . . . . . 16 (((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) ∧ (𝑧𝑌 ∧ (𝐹𝑧) = 𝑦)) → ¬ ∅ = (𝐹𝑥))
6261rexlimdvaa 3010 . . . . . . . . . . . . . . 15 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (∃𝑧𝑌 (𝐹𝑧) = 𝑦 → ¬ ∅ = (𝐹𝑥)))
6342, 62sylbid 228 . . . . . . . . . . . . . 14 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (𝑦 ∈ ran 𝐹 → ¬ ∅ = (𝐹𝑥)))
6463con2d 127 . . . . . . . . . . . . 13 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿𝑦𝑥)) → (∅ = (𝐹𝑥) → ¬ 𝑦 ∈ ran 𝐹))
6564expr 640 . . . . . . . . . . . 12 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (𝑦𝑥 → (∅ = (𝐹𝑥) → ¬ 𝑦 ∈ ran 𝐹)))
6665com23 83 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ 𝑥𝐿) → (∅ = (𝐹𝑥) → (𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹)))
6766impr 646 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → (𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹))
6867alrimiv 1841 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹))
69 imnan 436 . . . . . . . . . . . 12 ((𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ (𝑦𝑥𝑦 ∈ ran 𝐹))
70 elin 3754 . . . . . . . . . . . 12 (𝑦 ∈ (𝑥 ∩ ran 𝐹) ↔ (𝑦𝑥𝑦 ∈ ran 𝐹))
7169, 70xchbinxr 323 . . . . . . . . . . 11 ((𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
7271albii 1736 . . . . . . . . . 10 (∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
73 eq0 3884 . . . . . . . . . 10 ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ (𝑥 ∩ ran 𝐹))
74 eqcom 2613 . . . . . . . . . 10 ((𝑥 ∩ ran 𝐹) = ∅ ↔ ∅ = (𝑥 ∩ ran 𝐹))
7572, 73, 743bitr2i 286 . . . . . . . . 9 (∀𝑦(𝑦𝑥 → ¬ 𝑦 ∈ ran 𝐹) ↔ ∅ = (𝑥 ∩ ran 𝐹))
7668, 75sylib 206 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∅ = (𝑥 ∩ ran 𝐹))
77 simpll2 1093 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → 𝐿 ∈ (Fil‘𝑋))
78 simprl 789 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → 𝑥𝐿)
79 simplr 787 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ran 𝐹𝐿)
80 filin 21407 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑥𝐿 ∧ ran 𝐹𝐿) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
8177, 78, 79, 80syl3anc 1317 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → (𝑥 ∩ ran 𝐹) ∈ 𝐿)
8276, 81eqeltrd 2684 . . . . . . 7 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ (𝑥𝐿 ∧ ∅ = (𝐹𝑥))) → ∅ ∈ 𝐿)
8382rexlimdvaa 3010 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑥𝐿 ∅ = (𝐹𝑥) → ∅ ∈ 𝐿))
8437, 83syl5bi 230 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ∅ ∈ 𝐿))
8534, 84mtod 187 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ¬ ∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
86 df-nel 2779 . . . 4 (∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ¬ ∅ ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
8785, 86sylibr 222 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)))
88 vex 3172 . . . . . . . . 9 𝑟 ∈ V
8911elrnmpt 5277 . . . . . . . . 9 (𝑟 ∈ V → (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑟 = (𝐹𝑥)))
9088, 89ax-mp 5 . . . . . . . 8 (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑟 = (𝐹𝑥))
91 imaeq2 5365 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
9291eqeq2d 2616 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑟 = (𝐹𝑥) ↔ 𝑟 = (𝐹𝑢)))
9392cbvrexv 3144 . . . . . . . 8 (∃𝑥𝐿 𝑟 = (𝐹𝑥) ↔ ∃𝑢𝐿 𝑟 = (𝐹𝑢))
9490, 93bitri 262 . . . . . . 7 (𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑢𝐿 𝑟 = (𝐹𝑢))
95 vex 3172 . . . . . . . . 9 𝑠 ∈ V
9611elrnmpt 5277 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
9795, 96ax-mp 5 . . . . . . . 8 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
98 imaeq2 5365 . . . . . . . . . 10 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
9998eqeq2d 2616 . . . . . . . . 9 (𝑥 = 𝑣 → (𝑠 = (𝐹𝑥) ↔ 𝑠 = (𝐹𝑣)))
10099cbvrexv 3144 . . . . . . . 8 (∃𝑥𝐿 𝑠 = (𝐹𝑥) ↔ ∃𝑣𝐿 𝑠 = (𝐹𝑣))
10197, 100bitri 262 . . . . . . 7 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑣𝐿 𝑠 = (𝐹𝑣))
10294, 101anbi12i 728 . . . . . 6 ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ (∃𝑢𝐿 𝑟 = (𝐹𝑢) ∧ ∃𝑣𝐿 𝑠 = (𝐹𝑣)))
103 reeanv 3082 . . . . . 6 (∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) ↔ (∃𝑢𝐿 𝑟 = (𝐹𝑢) ∧ ∃𝑣𝐿 𝑠 = (𝐹𝑣)))
104102, 103bitr4i 265 . . . . 5 ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))
105 filin 21407 . . . . . . . . . . . . . 14 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑢𝐿𝑣𝐿) → (𝑢𝑣) ∈ 𝐿)
1061053expb 1257 . . . . . . . . . . . . 13 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝑢𝑣) ∈ 𝐿)
107106adantlr 746 . . . . . . . . . . . 12 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝑢𝑣) ∈ 𝐿)
108 eqidd 2607 . . . . . . . . . . . 12 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣)))
109 imaeq2 5365 . . . . . . . . . . . . . 14 (𝑥 = (𝑢𝑣) → (𝐹𝑥) = (𝐹 “ (𝑢𝑣)))
110109eqeq2d 2616 . . . . . . . . . . . . 13 (𝑥 = (𝑢𝑣) → ((𝐹 “ (𝑢𝑣)) = (𝐹𝑥) ↔ (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣))))
111110rspcev 3278 . . . . . . . . . . . 12 (((𝑢𝑣) ∈ 𝐿 ∧ (𝐹 “ (𝑢𝑣)) = (𝐹 “ (𝑢𝑣))) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
112107, 108, 111syl2anc 690 . . . . . . . . . . 11 (((𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
1131123adantl1 1209 . . . . . . . . . 10 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ (𝑢𝐿𝑣𝐿)) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
114113ad2ant2r 778 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥))
115 simpll1 1092 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑌𝐴)
116 cnvimass 5388 . . . . . . . . . . . . . 14 (𝐹 “ (𝑢𝑣)) ⊆ dom 𝐹
117116, 3syl5sseq 3612 . . . . . . . . . . . . 13 (𝐹:𝑌𝑋 → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
1181173ad2ant3 1076 . . . . . . . . . . . 12 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
119118ad2antrr 757 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ⊆ 𝑌)
120115, 119ssexd 4725 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ∈ V)
12111elrnmpt 5277 . . . . . . . . . 10 ((𝐹 “ (𝑢𝑣)) ∈ V → ((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥)))
122120, 121syl 17 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹 “ (𝑢𝑣)) = (𝐹𝑥)))
123114, 122mpbird 245 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
124 simprrl 799 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑟 = (𝐹𝑢))
125 simprrr 800 . . . . . . . . . . 11 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → 𝑠 = (𝐹𝑣))
126124, 125ineq12d 3773 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝑟𝑠) = ((𝐹𝑢) ∩ (𝐹𝑣)))
127 funcnvcnv 5853 . . . . . . . . . . . . 13 (Fun 𝐹 → Fun 𝐹)
128 imain 5871 . . . . . . . . . . . . 13 (Fun 𝐹 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
12947, 127, 1283syl 18 . . . . . . . . . . . 12 (𝐹:𝑌𝑋 → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
1301293ad2ant3 1076 . . . . . . . . . . 11 ((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
131130ad2antrr 757 . . . . . . . . . 10 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) = ((𝐹𝑢) ∩ (𝐹𝑣)))
132126, 131eqtr4d 2643 . . . . . . . . 9 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝑟𝑠) = (𝐹 “ (𝑢𝑣)))
133 eqimss2 3617 . . . . . . . . 9 ((𝑟𝑠) = (𝐹 “ (𝑢𝑣)) → (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠))
134132, 133syl 17 . . . . . . . 8 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠))
135 sseq1 3585 . . . . . . . . 9 (𝑡 = (𝐹 “ (𝑢𝑣)) → (𝑡 ⊆ (𝑟𝑠) ↔ (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠)))
136135rspcev 3278 . . . . . . . 8 (((𝐹 “ (𝑢𝑣)) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ (𝐹 “ (𝑢𝑣)) ⊆ (𝑟𝑠)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
137123, 134, 136syl2anc 690 . . . . . . 7 ((((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) ∧ ((𝑢𝐿𝑣𝐿) ∧ (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)))) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
138137exp32 628 . . . . . 6 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑢𝐿𝑣𝐿) → ((𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))))
139138rexlimdvv 3015 . . . . 5 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (∃𝑢𝐿𝑣𝐿 (𝑟 = (𝐹𝑢) ∧ 𝑠 = (𝐹𝑣)) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
140104, 139syl5bi 230 . . . 4 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ((𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))) → ∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
141140ralrimivv 2949 . . 3 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠))
14231, 87, 1413jca 1234 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))
143 isfbas2 21388 . . 3 (𝑌𝐴 → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))))
1446, 143syl 17 . 2 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → (ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌) ↔ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ 𝒫 𝑌 ∧ (ran (𝑥𝐿 ↦ (𝐹𝑥)) ≠ ∅ ∧ ∅ ∉ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∧ ∀𝑟 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∀𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))∃𝑡 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))𝑡 ⊆ (𝑟𝑠)))))
14514, 142, 144mpbir2and 958 1 (((𝑌𝐴𝐿 ∈ (Fil‘𝑋) ∧ 𝐹:𝑌𝑋) ∧ ran 𝐹𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ (fBas‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030  wal 1472   = wceq 1474  wcel 1976  wne 2776  wnel 2777  wral 2892  wrex 2893  Vcvv 3169  cin 3535  wss 3536  c0 3870  𝒫 cpw 4104  cmpt 4634  ccnv 5024  dom cdm 5025  ran crn 5026  cima 5028  Fun wfun 5781   Fn wfn 5782  wf 5783  cfv 5787  fBascfbas 19498  Filcfil 21398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-fv 5795  df-fbas 19507  df-fil 21399
This theorem is referenced by:  rnelfm  21506  fmfnfm  21511
  Copyright terms: Public domain W3C validator