![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngchomfval | Structured version Visualization version GIF version |
Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020.) (Revised by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
rngcbas.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
rngchomfval | ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngchomfval.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
2 | rngcbas.c | . . . . 5 ⊢ 𝐶 = (RngCat‘𝑈) | |
3 | rngcbas.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | rngcbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 2, 4, 3 | rngcbas 42475 | . . . . 5 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
6 | eqidd 2761 | . . . . 5 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = ( RngHomo ↾ (𝐵 × 𝐵))) | |
7 | 2, 3, 5, 6 | rngcval 42472 | . . . 4 ⊢ (𝜑 → 𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ (𝐵 × 𝐵)))) |
8 | 7 | fveq2d 6356 | . . 3 ⊢ (𝜑 → (Hom ‘𝐶) = (Hom ‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ (𝐵 × 𝐵))))) |
9 | 1, 8 | syl5eq 2806 | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ (𝐵 × 𝐵))))) |
10 | eqid 2760 | . . 3 ⊢ ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ (𝐵 × 𝐵))) = ((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ (𝐵 × 𝐵))) | |
11 | eqid 2760 | . . 3 ⊢ (Base‘(ExtStrCat‘𝑈)) = (Base‘(ExtStrCat‘𝑈)) | |
12 | fvexd 6364 | . . 3 ⊢ (𝜑 → (ExtStrCat‘𝑈) ∈ V) | |
13 | 5, 6 | rnghmresfn 42473 | . . 3 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
14 | inss1 3976 | . . . . 5 ⊢ (𝑈 ∩ Rng) ⊆ 𝑈 | |
15 | 14 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈) |
16 | eqid 2760 | . . . . . 6 ⊢ (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈) | |
17 | 16, 3 | estrcbas 16966 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘(ExtStrCat‘𝑈))) |
18 | 17 | eqcomd 2766 | . . . 4 ⊢ (𝜑 → (Base‘(ExtStrCat‘𝑈)) = 𝑈) |
19 | 15, 5, 18 | 3sstr4d 3789 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(ExtStrCat‘𝑈))) |
20 | 10, 11, 12, 13, 19 | reschom 16691 | . 2 ⊢ (𝜑 → ( RngHomo ↾ (𝐵 × 𝐵)) = (Hom ‘((ExtStrCat‘𝑈) ↾cat ( RngHomo ↾ (𝐵 × 𝐵))))) |
21 | 9, 20 | eqtr4d 2797 | 1 ⊢ (𝜑 → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∩ cin 3714 ⊆ wss 3715 × cxp 5264 ↾ cres 5268 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 Hom chom 16154 ↾cat cresc 16669 ExtStrCatcestrc 16963 Rngcrng 42384 RngHomo crngh 42395 RngCatcrngc 42467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-hom 16168 df-cco 16169 df-resc 16672 df-estrc 16964 df-rnghomo 42397 df-rngc 42469 |
This theorem is referenced by: rngchom 42477 rngchomfeqhom 42479 rngccofval 42480 rnghmsubcsetclem1 42485 rngcifuestrc 42507 funcrngcsetc 42508 rhmsubcrngc 42539 rhmsubc 42600 |
Copyright terms: Public domain | W3C validator |