![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcrescrhm | Structured version Visualization version GIF version |
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
Ref | Expression |
---|---|
rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rngcrescrhm | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . 2 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
2 | rngcrescrhm.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
3 | fvex 6239 | . . . 4 ⊢ (RngCat‘𝑈) ∈ V | |
4 | 2, 3 | eqeltri 2726 | . . 3 ⊢ 𝐶 ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 ∈ V) |
6 | rngcrescrhm.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
7 | incom 3838 | . . . 4 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
8 | 6, 7 | syl6eq 2701 | . . 3 ⊢ (𝜑 → 𝑅 = (𝑈 ∩ Ring)) |
9 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
10 | inex1g 4834 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
12 | 8, 11 | eqeltrd 2730 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
13 | inss1 3866 | . . . . . 6 ⊢ (Ring ∩ 𝑈) ⊆ Ring | |
14 | 6, 13 | syl6eqss 3688 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ Ring) |
15 | xpss12 5158 | . . . . 5 ⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring)) | |
16 | 14, 14, 15 | syl2anc 694 | . . . 4 ⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring)) |
17 | rhmfn 42243 | . . . . 5 ⊢ RingHom Fn (Ring × Ring) | |
18 | fnssresb 6041 | . . . . 5 ⊢ ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) | |
19 | 17, 18 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) |
20 | 16, 19 | mpbird 247 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
21 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
22 | 21 | fneq1i 6023 | . . 3 ⊢ (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
23 | 20, 22 | sylibr 224 | . 2 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
24 | 1, 5, 12, 23 | rescval2 16535 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∩ cin 3606 ⊆ wss 3607 〈cop 4216 × cxp 5141 ↾ cres 5145 Fn wfn 5921 ‘cfv 5926 (class class class)co 6690 ndxcnx 15901 sSet csts 15902 ↾s cress 15905 Hom chom 15999 ↾cat cresc 16515 Ringcrg 18593 RingHom crh 18760 RngCatcrngc 42282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-0g 16149 df-resc 16518 df-mhm 17382 df-ghm 17705 df-mgp 18536 df-ur 18548 df-ring 18595 df-rnghom 18763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |