Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcsect Structured version   Visualization version   GIF version

Theorem rngcsect 44250
Description: A section in the category of non-unital rings, written out. (Contributed by AV, 28-Feb-2020.)
Hypotheses
Ref Expression
rngcsect.c 𝐶 = (RngCat‘𝑈)
rngcsect.b 𝐵 = (Base‘𝐶)
rngcsect.u (𝜑𝑈𝑉)
rngcsect.x (𝜑𝑋𝐵)
rngcsect.y (𝜑𝑌𝐵)
rngcsect.e 𝐸 = (Base‘𝑋)
rngcsect.n 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
rngcsect (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))

Proof of Theorem rngcsect
StepHypRef Expression
1 rngcsect.b . . 3 𝐵 = (Base‘𝐶)
2 eqid 2821 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2821 . . 3 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2821 . . 3 (Id‘𝐶) = (Id‘𝐶)
5 rngcsect.n . . 3 𝑆 = (Sect‘𝐶)
6 rngcsect.u . . . 4 (𝜑𝑈𝑉)
7 rngcsect.c . . . . 5 𝐶 = (RngCat‘𝑈)
87rngccat 44248 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
96, 8syl 17 . . 3 (𝜑𝐶 ∈ Cat)
10 rngcsect.x . . 3 (𝜑𝑋𝐵)
11 rngcsect.y . . 3 (𝜑𝑌𝐵)
121, 2, 3, 4, 5, 9, 10, 11issect 17022 . 2 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
137, 1, 6, 2, 10, 11rngchom 44237 . . . . . . 7 (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋 RngHomo 𝑌))
1413eleq2d 2898 . . . . . 6 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹 ∈ (𝑋 RngHomo 𝑌)))
157, 1, 6, 2, 11, 10rngchom 44237 . . . . . . 7 (𝜑 → (𝑌(Hom ‘𝐶)𝑋) = (𝑌 RngHomo 𝑋))
1615eleq2d 2898 . . . . . 6 (𝜑 → (𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ↔ 𝐺 ∈ (𝑌 RngHomo 𝑋)))
1714, 16anbi12d 632 . . . . 5 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))))
1817anbi1d 631 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))))
196adantr 483 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑈𝑉)
2010adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑋𝐵)
217, 1, 6rngcbas 44235 . . . . . . . . . . 11 (𝜑𝐵 = (𝑈 ∩ Rng))
2221eleq2d 2898 . . . . . . . . . 10 (𝜑 → (𝑋𝐵𝑋 ∈ (𝑈 ∩ Rng)))
23 inss1 4204 . . . . . . . . . . . 12 (𝑈 ∩ Rng) ⊆ 𝑈
2423a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑈 ∩ Rng) ⊆ 𝑈)
2524sseld 3965 . . . . . . . . . 10 (𝜑 → (𝑋 ∈ (𝑈 ∩ Rng) → 𝑋𝑈))
2622, 25sylbid 242 . . . . . . . . 9 (𝜑 → (𝑋𝐵𝑋𝑈))
2726adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → (𝑋𝐵𝑋𝑈))
2820, 27mpd 15 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑋𝑈)
2911adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑌𝐵)
3021eleq2d 2898 . . . . . . . . . 10 (𝜑 → (𝑌𝐵𝑌 ∈ (𝑈 ∩ Rng)))
3124sseld 3965 . . . . . . . . . 10 (𝜑 → (𝑌 ∈ (𝑈 ∩ Rng) → 𝑌𝑈))
3230, 31sylbid 242 . . . . . . . . 9 (𝜑 → (𝑌𝐵𝑌𝑈))
3332adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → (𝑌𝐵𝑌𝑈))
3429, 33mpd 15 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝑌𝑈)
35 eqid 2821 . . . . . . . . . 10 (Base‘𝑋) = (Base‘𝑋)
36 eqid 2821 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
3735, 36rnghmf 44169 . . . . . . . . 9 (𝐹 ∈ (𝑋 RngHomo 𝑌) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
3837adantr 483 . . . . . . . 8 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
3938adantl 484 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝐹:(Base‘𝑋)⟶(Base‘𝑌))
4036, 35rnghmf 44169 . . . . . . . . 9 (𝐺 ∈ (𝑌 RngHomo 𝑋) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
4140adantl 484 . . . . . . . 8 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
4241adantl 484 . . . . . . 7 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → 𝐺:(Base‘𝑌)⟶(Base‘𝑋))
437, 19, 3, 28, 34, 28, 39, 42rngcco 44241 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = (𝐺𝐹))
44 rngcsect.e . . . . . . . 8 𝐸 = (Base‘𝑋)
457, 1, 4, 6, 10, 44rngcid 44249 . . . . . . 7 (𝜑 → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸))
4645adantr 483 . . . . . 6 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → ((Id‘𝐶)‘𝑋) = ( I ↾ 𝐸))
4743, 46eqeq12d 2837 . . . . 5 ((𝜑 ∧ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺𝐹) = ( I ↾ 𝐸)))
4847pm5.32da 581 . . . 4 (𝜑 → (((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
4918, 48bitrd 281 . . 3 (𝜑 → (((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
50 df-3an 1085 . . 3 ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))
51 df-3an 1085 . . 3 ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸)) ↔ ((𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋)) ∧ (𝐺𝐹) = ( I ↾ 𝐸)))
5249, 50, 513bitr4g 316 . 2 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
5312, 52bitrd 281 1 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋 RngHomo 𝑌) ∧ 𝐺 ∈ (𝑌 RngHomo 𝑋) ∧ (𝐺𝐹) = ( I ↾ 𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  cin 3934  wss 3935  cop 4572   class class class wbr 5065   I cid 5458  cres 5556  ccom 5558  wf 6350  cfv 6354  (class class class)co 7155  Basecbs 16482  Hom chom 16575  compcco 16576  Catccat 16934  Idccid 16935  Sectcsect 17013  Rngcrng 44144   RngHomo crngh 44155  RngCatcrngc 44227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-hom 16588  df-cco 16589  df-0g 16714  df-cat 16938  df-cid 16939  df-homf 16940  df-sect 17016  df-ssc 17079  df-resc 17080  df-subc 17081  df-estrc 17372  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-ghm 18355  df-abl 18908  df-mgp 19239  df-mgmhm 44045  df-rng0 44145  df-rnghomo 44157  df-rngc 44229
This theorem is referenced by:  rngcinv  44251
  Copyright terms: Public domain W3C validator