Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmco Structured version   Visualization version   GIF version

Theorem rnghmco 41211
Description: The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.)
Assertion
Ref Expression
rnghmco ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹𝐺) ∈ (𝑆 RngHomo 𝑈))

Proof of Theorem rnghmco
StepHypRef Expression
1 rnghmrcl 41193 . . . 4 (𝐹 ∈ (𝑇 RngHomo 𝑈) → (𝑇 ∈ Rng ∧ 𝑈 ∈ Rng))
21simprd 479 . . 3 (𝐹 ∈ (𝑇 RngHomo 𝑈) → 𝑈 ∈ Rng)
3 rnghmrcl 41193 . . . 4 (𝐺 ∈ (𝑆 RngHomo 𝑇) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng))
43simpld 475 . . 3 (𝐺 ∈ (𝑆 RngHomo 𝑇) → 𝑆 ∈ Rng)
52, 4anim12ci 590 . 2 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝑆 ∈ Rng ∧ 𝑈 ∈ Rng))
6 rnghmghm 41202 . . . 4 (𝐹 ∈ (𝑇 RngHomo 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈))
7 rnghmghm 41202 . . . 4 (𝐺 ∈ (𝑆 RngHomo 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇))
8 ghmco 17604 . . . 4 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
96, 7, 8syl2an 494 . . 3 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
10 eqid 2621 . . . . 5 (mulGrp‘𝑇) = (mulGrp‘𝑇)
11 eqid 2621 . . . . 5 (mulGrp‘𝑈) = (mulGrp‘𝑈)
1210, 11rnghmmgmhm 41198 . . . 4 (𝐹 ∈ (𝑇 RngHomo 𝑈) → 𝐹 ∈ ((mulGrp‘𝑇) MgmHom (mulGrp‘𝑈)))
13 eqid 2621 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1413, 10rnghmmgmhm 41198 . . . 4 (𝐺 ∈ (𝑆 RngHomo 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇)))
15 mgmhmco 41105 . . . 4 ((𝐹 ∈ ((mulGrp‘𝑇) MgmHom (mulGrp‘𝑈)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) → (𝐹𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈)))
1612, 14, 15syl2an 494 . . 3 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈)))
179, 16jca 554 . 2 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈))))
1813, 11isrnghmmul 41197 . 2 ((𝐹𝐺) ∈ (𝑆 RngHomo 𝑈) ↔ ((𝑆 ∈ Rng ∧ 𝑈 ∈ Rng) ∧ ((𝐹𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈)))))
195, 17, 18sylanbrc 697 1 ((𝐹 ∈ (𝑇 RngHomo 𝑈) ∧ 𝐺 ∈ (𝑆 RngHomo 𝑇)) → (𝐹𝐺) ∈ (𝑆 RngHomo 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1987  ccom 5080  cfv 5849  (class class class)co 6607   GrpHom cghm 17581  mulGrpcmgp 18413   MgmHom cmgmhm 41081  Rngcrng 41178   RngHomo crngh 41189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-ndx 15787  df-slot 15788  df-base 15789  df-sets 15790  df-plusg 15878  df-0g 16026  df-mgm 17166  df-sgrp 17208  df-mnd 17219  df-mhm 17259  df-grp 17349  df-ghm 17582  df-abl 18120  df-mgp 18414  df-mgmhm 41083  df-rng0 41179  df-rnghomo 41191
This theorem is referenced by:  rnghmsubcsetclem2  41280  rngccatidALTV  41293
  Copyright terms: Public domain W3C validator