Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmf1o Structured version   Visualization version   GIF version

Theorem rnghmf1o 44168
Description: A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rnghmf1o.b 𝐵 = (Base‘𝑅)
rnghmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
rnghmf1o (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RngHomo 𝑅)))

Proof of Theorem rnghmf1o
StepHypRef Expression
1 rnghmrcl 44154 . . . . 5 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
21ancomd 464 . . . 4 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng))
32adantr 483 . . 3 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng))
4 simpr 487 . . . . 5 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
5 rnghmghm 44163 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
65adantr 483 . . . . . 6 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
7 rnghmf1o.b . . . . . . . 8 𝐵 = (Base‘𝑅)
8 rnghmf1o.c . . . . . . . 8 𝐶 = (Base‘𝑆)
97, 8ghmf1o 18382 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 GrpHom 𝑅)))
109bicomd 225 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
116, 10syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
124, 11mpbird 259 . . . 4 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 GrpHom 𝑅))
13 eqidd 2822 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 = 𝐹)
14 eqid 2821 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1514, 7mgpbas 19239 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑅))
1615a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅)))
17 eqid 2821 . . . . . . . . 9 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1817, 8mgpbas 19239 . . . . . . . 8 𝐶 = (Base‘(mulGrp‘𝑆))
1918a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆)))
2013, 16, 19f1oeq123d 6604 . . . . . 6 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2120biimpa 479 . . . . 5 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))
2214, 17rnghmmgmhm 44159 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))
2322adantr 483 . . . . . 6 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))
24 eqid 2821 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
25 eqid 2821 . . . . . . . 8 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
2624, 25mgmhmf1o 44048 . . . . . . 7 (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))
2726bicomd 225 . . . . . 6 (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2823, 27syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2921, 28mpbird 259 . . . 4 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))
3012, 29jca 514 . . 3 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))
3117, 14isrnghmmul 44158 . . 3 (𝐹 ∈ (𝑆 RngHomo 𝑅) ↔ ((𝑆 ∈ Rng ∧ 𝑅 ∈ Rng) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))))
323, 30, 31sylanbrc 585 . 2 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 RngHomo 𝑅))
337, 8rnghmf 44164 . . . . 5 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹:𝐵𝐶)
3433adantr 483 . . . 4 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹:𝐵𝐶)
3534ffnd 6509 . . 3 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹 Fn 𝐵)
368, 7rnghmf 44164 . . . . 5 (𝐹 ∈ (𝑆 RngHomo 𝑅) → 𝐹:𝐶𝐵)
3736adantl 484 . . . 4 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹:𝐶𝐵)
3837ffnd 6509 . . 3 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹 Fn 𝐶)
39 dff1o4 6617 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
4035, 38, 39sylanbrc 585 . 2 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
4132, 40impbida 799 1 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RngHomo 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  ccnv 5548   Fn wfn 6344  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  Basecbs 16477   GrpHom cghm 18349  mulGrpcmgp 19233   MgmHom cmgmhm 44038  Rngcrng 44139   RngHomo crngh 44150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-ghm 18350  df-abl 18903  df-mgp 19234  df-mgmhm 44040  df-rng0 44140  df-rnghomo 44152
This theorem is referenced by:  isrngim  44169
  Copyright terms: Public domain W3C validator