Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmresel Structured version   Visualization version   GIF version

Theorem rnghmresel 41735
Description: An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020.)
Hypothesis
Ref Expression
rnghmresel.h (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
rnghmresel ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHomo 𝑌))

Proof of Theorem rnghmresel
StepHypRef Expression
1 rnghmresel.h . . . . . 6 (𝜑𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
21adantr 481 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐻 = ( RngHomo ↾ (𝐵 × 𝐵)))
32oveqd 6664 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋( RngHomo ↾ (𝐵 × 𝐵))𝑌))
4 ovres 6797 . . . . 5 ((𝑋𝐵𝑌𝐵) → (𝑋( RngHomo ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHomo 𝑌))
54adantl 482 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋( RngHomo ↾ (𝐵 × 𝐵))𝑌) = (𝑋 RngHomo 𝑌))
63, 5eqtrd 2655 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐻𝑌) = (𝑋 RngHomo 𝑌))
76eleq2d 2686 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹 ∈ (𝑋 RngHomo 𝑌)))
87biimp3a 1431 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → 𝐹 ∈ (𝑋 RngHomo 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1482  wcel 1989   × cxp 5110  cres 5114  (class class class)co 6647   RngHomo crngh 41656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pr 4904
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-xp 5118  df-res 5124  df-iota 5849  df-fv 5894  df-ov 6650
This theorem is referenced by:  rnghmsubcsetclem2  41747
  Copyright terms: Public domain W3C validator