Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngnegr Structured version   Visualization version   GIF version

Theorem rngnegr 18641
 Description: Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 33871 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
rngnegr (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))

Proof of Theorem rngnegr
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
3 ringgrp 18598 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
41, 3syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
5 ringnegl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
6 ringnegl.u . . . . . . . 8 1 = (1r𝑅)
75, 6ringidcl 18614 . . . . . . 7 (𝑅 ∈ Ring → 1𝐵)
81, 7syl 17 . . . . . 6 (𝜑1𝐵)
9 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
105, 9grpinvcl 17514 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
114, 8, 10syl2anc 694 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
12 eqid 2651 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
145, 12, 13ringdi 18612 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵1𝐵)) → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
151, 2, 11, 8, 14syl13anc 1368 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
16 eqid 2651 . . . . . . . 8 (0g𝑅) = (0g𝑅)
175, 12, 16, 9grplinv 17515 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
184, 8, 17syl2anc 694 . . . . . 6 (𝜑 → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
1918oveq2d 6706 . . . . 5 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (𝑋 · (0g𝑅)))
205, 13, 16ringrz 18634 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
211, 2, 20syl2anc 694 . . . . 5 (𝜑 → (𝑋 · (0g𝑅)) = (0g𝑅))
2219, 21eqtrd 2685 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (0g𝑅))
235, 13, 6ringridm 18618 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
241, 2, 23syl2anc 694 . . . . 5 (𝜑 → (𝑋 · 1 ) = 𝑋)
2524oveq2d 6706 . . . 4 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)𝑋))
2615, 22, 253eqtr3rd 2694 . . 3 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅))
275, 13ringcl 18607 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵) → (𝑋 · (𝑁1 )) ∈ 𝐵)
281, 2, 11, 27syl3anc 1366 . . . 4 (𝜑 → (𝑋 · (𝑁1 )) ∈ 𝐵)
295, 12, 16, 9grpinvid2 17518 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑋 · (𝑁1 )) ∈ 𝐵) → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
304, 2, 28, 29syl3anc 1366 . . 3 (𝜑 → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
3126, 30mpbird 247 . 2 (𝜑 → (𝑁𝑋) = (𝑋 · (𝑁1 )))
3231eqcomd 2657 1 (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523   ∈ wcel 2030  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  0gc0g 16147  Grpcgrp 17469  invgcminusg 17470  1rcur 18547  Ringcrg 18593 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-mgp 18536  df-ur 18548  df-ring 18595 This theorem is referenced by:  ringmneg2  18643  irredneg  18756  lmodsubdi  18968  mdetunilem7  20472  ldualvsubval  34762  lcdvsubval  37224  mapdpglem30  37308
 Copyright terms: Public domain W3C validator