Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngo0cl Structured version   Visualization version   GIF version

Theorem rngo0cl 33698
Description: A ring has an additive identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ring0cl.1 𝐺 = (1st𝑅)
ring0cl.2 𝑋 = ran 𝐺
ring0cl.3 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
rngo0cl (𝑅 ∈ RingOps → 𝑍𝑋)

Proof of Theorem rngo0cl
StepHypRef Expression
1 ring0cl.1 . . 3 𝐺 = (1st𝑅)
21rngogrpo 33689 . 2 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ring0cl.2 . . 3 𝑋 = ran 𝐺
4 ring0cl.3 . . 3 𝑍 = (GId‘𝐺)
53, 4grpoidcl 27352 . 2 (𝐺 ∈ GrpOp → 𝑍𝑋)
62, 5syl 17 1 (𝑅 ∈ RingOps → 𝑍𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1482  wcel 1989  ran crn 5113  cfv 5886  1st c1st 7163  GrpOpcgr 27327  GIdcgi 27328  RingOpscrngo 33673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-fo 5892  df-fv 5894  df-riota 6608  df-ov 6650  df-1st 7165  df-2nd 7166  df-grpo 27331  df-gid 27332  df-ablo 27383  df-rngo 33674
This theorem is referenced by:  rngolz  33701  rngorz  33702  rngosn6  33705  rngoueqz  33719  rngoidl  33803  0idl  33804  keridl  33811  prnc  33846  isdmn3  33853
  Copyright terms: Public domain W3C validator