Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoablo Structured version   Visualization version   GIF version

Theorem rngoablo 35180
Description: A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ringabl.1 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngoablo (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)

Proof of Theorem rngoablo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringabl.1 . . 3 𝐺 = (1st𝑅)
2 eqid 2821 . . 3 (2nd𝑅) = (2nd𝑅)
3 eqid 2821 . . 3 ran 𝐺 = ran 𝐺
41, 2, 3rngoi 35171 . 2 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ (2nd𝑅):(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥(2nd𝑅)𝑦)(2nd𝑅)𝑧) = (𝑥(2nd𝑅)(𝑦(2nd𝑅)𝑧)) ∧ (𝑥(2nd𝑅)(𝑦𝐺𝑧)) = ((𝑥(2nd𝑅)𝑦)𝐺(𝑥(2nd𝑅)𝑧)) ∧ ((𝑥𝐺𝑦)(2nd𝑅)𝑧) = ((𝑥(2nd𝑅)𝑧)𝐺(𝑦(2nd𝑅)𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥(2nd𝑅)𝑦) = 𝑦 ∧ (𝑦(2nd𝑅)𝑥) = 𝑦))))
54simplld 766 1 (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139   × cxp 5548  ran crn 5551  wf 6346  cfv 6350  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  AbelOpcablo 28315  RingOpscrngo 35166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fv 6358  df-ov 7153  df-1st 7683  df-2nd 7684  df-rngo 35167
This theorem is referenced by:  rngoablo2  35181  rngogrpo  35182  rngocom  35185  rngoa32  35187  rngoa4  35188
  Copyright terms: Public domain W3C validator