![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngodm1dm2 | Structured version Visualization version GIF version |
Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnplrnml0.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
rnplrnml0.2 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngodm1dm2 | ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnplrnml0.2 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 33839 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | eqid 2651 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
4 | 3 | grpofo 27481 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺) |
6 | rnplrnml0.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
7 | 1, 6, 3 | rngosm 33829 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) |
8 | fof 6153 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → 𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) | |
9 | fdm 6089 | . . . 4 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺)) |
11 | fdm 6089 | . . . 4 ⊢ (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom 𝐻 = (ran 𝐺 × ran 𝐺)) | |
12 | eqtr 2670 | . . . . . . 7 ⊢ ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom 𝐺 = dom 𝐻) | |
13 | 12 | dmeqd 5358 | . . . . . 6 ⊢ ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom dom 𝐺 = dom dom 𝐻) |
14 | 13 | expcom 450 | . . . . 5 ⊢ ((ran 𝐺 × ran 𝐺) = dom 𝐻 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
15 | 14 | eqcoms 2659 | . . . 4 ⊢ (dom 𝐻 = (ran 𝐺 × ran 𝐺) → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
16 | 11, 15 | syl 17 | . . 3 ⊢ (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻)) |
17 | 10, 16 | syl5com 31 | . 2 ⊢ (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom dom 𝐺 = dom dom 𝐻)) |
18 | 5, 7, 17 | sylc 65 | 1 ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 × cxp 5141 dom cdm 5143 ran crn 5144 ⟶wf 5922 –onto→wfo 5924 ‘cfv 5926 1st c1st 7208 2nd c2nd 7209 GrpOpcgr 27471 RingOpscrngo 33823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fo 5932 df-fv 5934 df-ov 6693 df-1st 7210 df-2nd 7211 df-grpo 27475 df-ablo 27527 df-rngo 33824 |
This theorem is referenced by: rngorn1 33862 |
Copyright terms: Public domain | W3C validator |