Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngodm1dm2 Structured version   Visualization version   GIF version

Theorem rngodm1dm2 33861
Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnplrnml0.1 𝐻 = (2nd𝑅)
rnplrnml0.2 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngodm1dm2 (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻)

Proof of Theorem rngodm1dm2
StepHypRef Expression
1 rnplrnml0.2 . . . 4 𝐺 = (1st𝑅)
21rngogrpo 33839 . . 3 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 eqid 2651 . . . 4 ran 𝐺 = ran 𝐺
43grpofo 27481 . . 3 (𝐺 ∈ GrpOp → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺)
52, 4syl 17 . 2 (𝑅 ∈ RingOps → 𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺)
6 rnplrnml0.1 . . 3 𝐻 = (2nd𝑅)
71, 6, 3rngosm 33829 . 2 (𝑅 ∈ RingOps → 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
8 fof 6153 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
9 fdm 6089 . . . 4 (𝐺:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺))
108, 9syl 17 . . 3 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → dom 𝐺 = (ran 𝐺 × ran 𝐺))
11 fdm 6089 . . . 4 (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom 𝐻 = (ran 𝐺 × ran 𝐺))
12 eqtr 2670 . . . . . . 7 ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom 𝐺 = dom 𝐻)
1312dmeqd 5358 . . . . . 6 ((dom 𝐺 = (ran 𝐺 × ran 𝐺) ∧ (ran 𝐺 × ran 𝐺) = dom 𝐻) → dom dom 𝐺 = dom dom 𝐻)
1413expcom 450 . . . . 5 ((ran 𝐺 × ran 𝐺) = dom 𝐻 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻))
1514eqcoms 2659 . . . 4 (dom 𝐻 = (ran 𝐺 × ran 𝐺) → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻))
1611, 15syl 17 . . 3 (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → (dom 𝐺 = (ran 𝐺 × ran 𝐺) → dom dom 𝐺 = dom dom 𝐻))
1710, 16syl5com 31 . 2 (𝐺:(ran 𝐺 × ran 𝐺)–onto→ran 𝐺 → (𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 → dom dom 𝐺 = dom dom 𝐻))
185, 7, 17sylc 65 1 (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030   × cxp 5141  dom cdm 5143  ran crn 5144  wf 5922  ontowfo 5924  cfv 5926  1st c1st 7208  2nd c2nd 7209  GrpOpcgr 27471  RingOpscrngo 33823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fo 5932  df-fv 5934  df-ov 6693  df-1st 7210  df-2nd 7211  df-grpo 27475  df-ablo 27527  df-rngo 33824
This theorem is referenced by:  rngorn1  33862
  Copyright terms: Public domain W3C validator