Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomadd Structured version   Visualization version   GIF version

Theorem rngohomadd 35241
Description: Ring homomorphisms preserve addition. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
rnghomadd.1 𝐺 = (1st𝑅)
rnghomadd.2 𝑋 = ran 𝐺
rnghomadd.3 𝐽 = (1st𝑆)
Assertion
Ref Expression
rngohomadd (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐺𝐵)) = ((𝐹𝐴)𝐽(𝐹𝐵)))

Proof of Theorem rngohomadd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghomadd.1 . . . . . . 7 𝐺 = (1st𝑅)
2 eqid 2821 . . . . . . 7 (2nd𝑅) = (2nd𝑅)
3 rnghomadd.2 . . . . . . 7 𝑋 = ran 𝐺
4 eqid 2821 . . . . . . 7 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
5 rnghomadd.3 . . . . . . 7 𝐽 = (1st𝑆)
6 eqid 2821 . . . . . . 7 (2nd𝑆) = (2nd𝑆)
7 eqid 2821 . . . . . . 7 ran 𝐽 = ran 𝐽
8 eqid 2821 . . . . . . 7 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
91, 2, 3, 4, 5, 6, 7, 8isrngohom 35237 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋⟶ran 𝐽 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))))
109biimpa 479 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:𝑋⟶ran 𝐽 ∧ (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))))
1110simp3d 1140 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
12113impa 1106 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
13 simpl 485 . . . 4 (((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) → (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
14132ralimi 3161 . . 3 (∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
1512, 14syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
16 fvoveq1 7173 . . . 4 (𝑥 = 𝐴 → (𝐹‘(𝑥𝐺𝑦)) = (𝐹‘(𝐴𝐺𝑦)))
17 fveq2 6664 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
1817oveq1d 7165 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)𝐽(𝐹𝑦)) = ((𝐹𝐴)𝐽(𝐹𝑦)))
1916, 18eqeq12d 2837 . . 3 (𝑥 = 𝐴 → ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐺𝑦)) = ((𝐹𝐴)𝐽(𝐹𝑦))))
20 oveq2 7158 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
2120fveq2d 6668 . . . 4 (𝑦 = 𝐵 → (𝐹‘(𝐴𝐺𝑦)) = (𝐹‘(𝐴𝐺𝐵)))
22 fveq2 6664 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
2322oveq2d 7166 . . . 4 (𝑦 = 𝐵 → ((𝐹𝐴)𝐽(𝐹𝑦)) = ((𝐹𝐴)𝐽(𝐹𝐵)))
2421, 23eqeq12d 2837 . . 3 (𝑦 = 𝐵 → ((𝐹‘(𝐴𝐺𝑦)) = ((𝐹𝐴)𝐽(𝐹𝑦)) ↔ (𝐹‘(𝐴𝐺𝐵)) = ((𝐹𝐴)𝐽(𝐹𝐵))))
2519, 24rspc2v 3632 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) → (𝐹‘(𝐴𝐺𝐵)) = ((𝐹𝐴)𝐽(𝐹𝐵))))
2615, 25mpan9 509 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐺𝐵)) = ((𝐹𝐴)𝐽(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  ran crn 5550  wf 6345  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  GIdcgi 28261  RingOpscrngo 35166   RngHom crnghom 35232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-rngohom 35235
This theorem is referenced by:  rngogrphom  35243  rngohomco  35246  rngoisocnv  35253  keridl  35304
  Copyright terms: Public domain W3C validator