Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohomco Structured version   Visualization version   GIF version

Theorem rngohomco 35133
Description: The composition of two ring homomorphisms is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngohomco (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))

Proof of Theorem rngohomco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . . . . 7 (1st𝑆) = (1st𝑆)
2 eqid 2818 . . . . . . 7 ran (1st𝑆) = ran (1st𝑆)
3 eqid 2818 . . . . . . 7 (1st𝑇) = (1st𝑇)
4 eqid 2818 . . . . . . 7 ran (1st𝑇) = ran (1st𝑇)
51, 2, 3, 4rngohomf 35125 . . . . . 6 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
653expa 1110 . . . . 5 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
763adantl1 1158 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
87adantrl 712 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → 𝐺:ran (1st𝑆)⟶ran (1st𝑇))
9 eqid 2818 . . . . . . 7 (1st𝑅) = (1st𝑅)
10 eqid 2818 . . . . . . 7 ran (1st𝑅) = ran (1st𝑅)
119, 10, 1, 2rngohomf 35125 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
12113expa 1110 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
13123adantl3 1160 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
1413adantrr 713 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → 𝐹:ran (1st𝑅)⟶ran (1st𝑆))
15 fco 6524 . . 3 ((𝐺:ran (1st𝑆)⟶ran (1st𝑇) ∧ 𝐹:ran (1st𝑅)⟶ran (1st𝑆)) → (𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇))
168, 14, 15syl2anc 584 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇))
17 eqid 2818 . . . . . . 7 (2nd𝑅) = (2nd𝑅)
18 eqid 2818 . . . . . . 7 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
1910, 17, 18rngo1cl 35098 . . . . . 6 (𝑅 ∈ RingOps → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
20193ad2ant1 1125 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
2120adantr 481 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
22 fvco3 6753 . . . 4 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (GId‘(2nd𝑅)) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (𝐺‘(𝐹‘(GId‘(2nd𝑅)))))
2314, 21, 22syl2anc 584 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (𝐺‘(𝐹‘(GId‘(2nd𝑅)))))
24 eqid 2818 . . . . . . . . 9 (2nd𝑆) = (2nd𝑆)
25 eqid 2818 . . . . . . . . 9 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
2617, 18, 24, 25rngohom1 35127 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
27263expa 1110 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
28273adantl3 1160 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
2928adantrr 713 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
3029fveq2d 6667 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺‘(𝐹‘(GId‘(2nd𝑅)))) = (𝐺‘(GId‘(2nd𝑆))))
31 eqid 2818 . . . . . . . 8 (2nd𝑇) = (2nd𝑇)
32 eqid 2818 . . . . . . . 8 (GId‘(2nd𝑇)) = (GId‘(2nd𝑇))
3324, 25, 31, 32rngohom1 35127 . . . . . . 7 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
34333expa 1110 . . . . . 6 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
35343adantl1 1158 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
3635adantrl 712 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑇)))
3730, 36eqtrd 2853 . . 3 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺‘(𝐹‘(GId‘(2nd𝑅)))) = (GId‘(2nd𝑇)))
3823, 37eqtrd 2853 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)))
399, 10, 1rngohomadd 35128 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4039ex 413 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
41403expa 1110 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
42413adantl3 1160 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
4342imp 407 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4443adantlrr 717 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(1st𝑅)𝑦)) = ((𝐹𝑥)(1st𝑆)(𝐹𝑦)))
4544fveq2d 6667 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))) = (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))))
469, 10, 1, 2rngohomcl 35126 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑥 ∈ ran (1st𝑅)) → (𝐹𝑥) ∈ ran (1st𝑆))
479, 10, 1, 2rngohomcl 35126 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹𝑦) ∈ ran (1st𝑆))
4846, 47anim12dan 618 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
4948ex 413 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
50493expa 1110 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
51503adantl3 1160 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))))
5251imp 407 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
5352adantlrr 717 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)))
541, 2, 3rngohomadd 35128 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
5554ex 413 . . . . . . . . . . 11 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
56553expa 1110 . . . . . . . . . 10 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
57563adantl1 1158 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦)))))
5857imp 407 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
5958adantlrl 716 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
6053, 59syldan 591 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘((𝐹𝑥)(1st𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
6145, 60eqtrd 2853 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
629, 10rngogcl 35071 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
63623expb 1112 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
64633ad2antl1 1177 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
6564adantlr 711 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅))
66 fvco3 6753 . . . . . . 7 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
6714, 66sylan 580 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥(1st𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
6865, 67syldan 591 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(1st𝑅)𝑦))))
69 fvco3 6753 . . . . . . . 8 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ 𝑥 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
7014, 69sylan 580 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ 𝑥 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
71 fvco3 6753 . . . . . . . 8 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
7214, 71sylan 580 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ 𝑦 ∈ ran (1st𝑅)) → ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦)))
7370, 72anim12dan 618 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))))
74 oveq12 7154 . . . . . 6 ((((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))) → (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
7573, 74syl 17 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(1st𝑇)(𝐺‘(𝐹𝑦))))
7661, 68, 753eqtr4d 2863 . . . 4 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)))
779, 10, 17, 24rngohommul 35129 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
7877ex 413 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
79783expa 1110 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
80793adantl3 1160 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → ((𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
8180imp 407 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
8281adantlrr 717 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐹‘(𝑥(2nd𝑅)𝑦)) = ((𝐹𝑥)(2nd𝑆)(𝐹𝑦)))
8382fveq2d 6667 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))) = (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))))
841, 2, 24, 31rngohommul 35129 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
8584ex 413 . . . . . . . . . . 11 ((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
86853expa 1110 . . . . . . . . . 10 (((𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
87863adantl1 1158 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆)) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦)))))
8887imp 407 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
8988adantlrl 716 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ ((𝐹𝑥) ∈ ran (1st𝑆) ∧ (𝐹𝑦) ∈ ran (1st𝑆))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
9053, 89syldan 591 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘((𝐹𝑥)(2nd𝑆)(𝐹𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
9183, 90eqtrd 2853 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
929, 17, 10rngocl 35060 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅)) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
93923expb 1112 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
94933ad2antl1 1177 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
9594adantlr 711 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅))
96 fvco3 6753 . . . . . . 7 ((𝐹:ran (1st𝑅)⟶ran (1st𝑆) ∧ (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
9714, 96sylan 580 . . . . . 6 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥(2nd𝑅)𝑦) ∈ ran (1st𝑅)) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
9895, 97syldan 591 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (𝐺‘(𝐹‘(𝑥(2nd𝑅)𝑦))))
99 oveq12 7154 . . . . . 6 ((((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)) ∧ ((𝐺𝐹)‘𝑦) = (𝐺‘(𝐹𝑦))) → (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
10073, 99syl 17 . . . . 5 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)) = ((𝐺‘(𝐹𝑥))(2nd𝑇)(𝐺‘(𝐹𝑦))))
10191, 98, 1003eqtr4d 2863 . . . 4 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦)))
10276, 101jca 512 . . 3 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅))) → (((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))
103102ralrimivva 3188 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))
1049, 17, 10, 18, 3, 31, 4, 32isrngohom 35124 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
1051043adant2 1123 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) → ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
106105adantr 481 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → ((𝐺𝐹) ∈ (𝑅 RngHom 𝑇) ↔ ((𝐺𝐹):ran (1st𝑅)⟶ran (1st𝑇) ∧ ((𝐺𝐹)‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑇)) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(((𝐺𝐹)‘(𝑥(1st𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(1st𝑇)((𝐺𝐹)‘𝑦)) ∧ ((𝐺𝐹)‘(𝑥(2nd𝑅)𝑦)) = (((𝐺𝐹)‘𝑥)(2nd𝑇)((𝐺𝐹)‘𝑦))))))
10716, 38, 103, 106mpbir3and 1334 1 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝑇 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇))) → (𝐺𝐹) ∈ (𝑅 RngHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  ran crn 5549  ccom 5552  wf 6344  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  GIdcgi 28194  RingOpscrngo 35053   RngHom crnghom 35119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-map 8397  df-grpo 28197  df-gid 28198  df-ablo 28249  df-ass 35002  df-exid 35004  df-mgmOLD 35008  df-sgrOLD 35020  df-mndo 35026  df-rngo 35054  df-rngohom 35122
This theorem is referenced by:  rngoisoco  35141
  Copyright terms: Public domain W3C validator