Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoidl Structured version   Visualization version   GIF version

Theorem rngoidl 33794
Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
rngidl.1 𝐺 = (1st𝑅)
rngidl.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoidl (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))

Proof of Theorem rngoidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3616 . . 3 𝑋𝑋
21a1i 11 . 2 (𝑅 ∈ RingOps → 𝑋𝑋)
3 rngidl.1 . . 3 𝐺 = (1st𝑅)
4 rngidl.2 . . 3 𝑋 = ran 𝐺
5 eqid 2620 . . 3 (GId‘𝐺) = (GId‘𝐺)
63, 4, 5rngo0cl 33689 . 2 (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋)
73, 4rngogcl 33682 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
873expa 1263 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
98ralrimiva 2963 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋)
10 eqid 2620 . . . . . . . . 9 (2nd𝑅) = (2nd𝑅)
113, 10, 4rngocl 33671 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧𝑋𝑥𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
12113com23 1269 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
133, 10, 4rngocl 33671 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥(2nd𝑅)𝑧) ∈ 𝑋)
1412, 13jca 554 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
15143expa 1263 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
1615ralrimiva 2963 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
179, 16jca 554 . . 3 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
1817ralrimiva 2963 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
193, 10, 4, 5isidl 33784 . 2 (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))))
202, 6, 18, 19mpbir3and 1243 1 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wral 2909  wss 3567  ran crn 5105  cfv 5876  (class class class)co 6635  1st c1st 7151  2nd c2nd 7152  GIdcgi 27314  RingOpscrngo 33664  Idlcidl 33777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fo 5882  df-fv 5884  df-riota 6596  df-ov 6638  df-1st 7153  df-2nd 7154  df-grpo 27317  df-gid 27318  df-ablo 27369  df-rngo 33665  df-idl 33780
This theorem is referenced by:  divrngidl  33798  igenval  33831  igenidl  33833
  Copyright terms: Public domain W3C validator