Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoidl Structured version   Visualization version   GIF version

Theorem rngoidl 35183
Description: A ring 𝑅 is an 𝑅 ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
rngidl.1 𝐺 = (1st𝑅)
rngidl.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoidl (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))

Proof of Theorem rngoidl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssidd 3987 . 2 (𝑅 ∈ RingOps → 𝑋𝑋)
2 rngidl.1 . . 3 𝐺 = (1st𝑅)
3 rngidl.2 . . 3 𝑋 = ran 𝐺
4 eqid 2818 . . 3 (GId‘𝐺) = (GId‘𝐺)
52, 3, 4rngo0cl 35078 . 2 (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋)
62, 3rngogcl 35071 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
763expa 1110 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑥𝐺𝑦) ∈ 𝑋)
87ralrimiva 3179 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋)
9 eqid 2818 . . . . . . . . 9 (2nd𝑅) = (2nd𝑅)
102, 9, 3rngocl 35060 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑧𝑋𝑥𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
11103com23 1118 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑧(2nd𝑅)𝑥) ∈ 𝑋)
122, 9, 3rngocl 35060 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → (𝑥(2nd𝑅)𝑧) ∈ 𝑋)
1311, 12jca 512 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑥𝑋𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
14133expa 1110 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑥𝑋) ∧ 𝑧𝑋) → ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
1514ralrimiva 3179 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋))
168, 15jca 512 . . 3 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
1716ralrimiva 3179 . 2 (𝑅 ∈ RingOps → ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))
182, 9, 3, 4isidl 35173 . 2 (𝑅 ∈ RingOps → (𝑋 ∈ (Idl‘𝑅) ↔ (𝑋𝑋 ∧ (GId‘𝐺) ∈ 𝑋 ∧ ∀𝑥𝑋 (∀𝑦𝑋 (𝑥𝐺𝑦) ∈ 𝑋 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝑋 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝑋)))))
191, 5, 17, 18mpbir3and 1334 1 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wss 3933  ran crn 5549  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  GIdcgi 28194  RingOpscrngo 35053  Idlcidl 35166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356  df-riota 7103  df-ov 7148  df-1st 7678  df-2nd 7679  df-grpo 28197  df-gid 28198  df-ablo 28249  df-rngo 35054  df-idl 35169
This theorem is referenced by:  divrngidl  35187  igenval  35220  igenidl  35222
  Copyright terms: Public domain W3C validator