Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngolz Structured version   Visualization version   GIF version

Theorem rngolz 35081
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1 𝑍 = (GId‘𝐺)
ringlz.2 𝑋 = ran 𝐺
ringlz.3 𝐺 = (1st𝑅)
ringlz.4 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngolz ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) = 𝑍)

Proof of Theorem rngolz
StepHypRef Expression
1 ringlz.3 . . . . . . 7 𝐺 = (1st𝑅)
21rngogrpo 35069 . . . . . 6 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 ringlz.2 . . . . . . 7 𝑋 = ran 𝐺
4 ringlz.1 . . . . . . 7 𝑍 = (GId‘𝐺)
53, 4grpoidcl 28218 . . . . . 6 (𝐺 ∈ GrpOp → 𝑍𝑋)
63, 4grpolid 28220 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑍𝑋) → (𝑍𝐺𝑍) = 𝑍)
72, 5, 6syl2anc2 585 . . . . 5 (𝑅 ∈ RingOps → (𝑍𝐺𝑍) = 𝑍)
87adantr 481 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐺𝑍) = 𝑍)
98oveq1d 7160 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = (𝑍𝐻𝐴))
101, 3, 4rngo0cl 35078 . . . . . 6 (𝑅 ∈ RingOps → 𝑍𝑋)
1110adantr 481 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑍𝑋)
12 simpr 485 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐴𝑋)
1311, 11, 123jca 1120 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝑋𝑍𝑋𝐴𝑋))
14 ringlz.4 . . . . 5 𝐻 = (2nd𝑅)
151, 14, 3rngodir 35064 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑍𝑋𝑍𝑋𝐴𝑋)) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)))
1613, 15syldan 591 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑍𝐺𝑍)𝐻𝐴) = ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)))
172adantr 481 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐺 ∈ GrpOp)
18 simpl 483 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑅 ∈ RingOps)
191, 14, 3rngocl 35060 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑍𝑋𝐴𝑋) → (𝑍𝐻𝐴) ∈ 𝑋)
2018, 11, 12, 19syl3anc 1363 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) ∈ 𝑋)
213, 4grporid 28221 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → ((𝑍𝐻𝐴)𝐺𝑍) = (𝑍𝐻𝐴))
2221eqcomd 2824 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑍𝐻𝐴) ∈ 𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍))
2317, 20, 22syl2anc 584 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) = ((𝑍𝐻𝐴)𝐺𝑍))
249, 16, 233eqtr3d 2861 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍))
253grpolcan 28234 . . 3 ((𝐺 ∈ GrpOp ∧ ((𝑍𝐻𝐴) ∈ 𝑋𝑍𝑋 ∧ (𝑍𝐻𝐴) ∈ 𝑋)) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍))
2617, 20, 11, 20, 25syl13anc 1364 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (((𝑍𝐻𝐴)𝐺(𝑍𝐻𝐴)) = ((𝑍𝐻𝐴)𝐺𝑍) ↔ (𝑍𝐻𝐴) = 𝑍))
2724, 26mpbid 233 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑍𝐻𝐴) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  ran crn 5549  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  GrpOpcgr 28193  GIdcgi 28194  RingOpscrngo 35053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-1st 7678  df-2nd 7679  df-grpo 28197  df-gid 28198  df-ginv 28199  df-ablo 28249  df-rngo 35054
This theorem is referenced by:  rngonegmn1l  35100  isdrngo3  35118  0idl  35184  keridl  35191  prnc  35226
  Copyright terms: Public domain W3C validator