Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngomndo Structured version   Visualization version   GIF version

Theorem rngomndo 35094
Description: In a unital ring the multiplication is a monoid. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
unmnd.1 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngomndo (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)

Proof of Theorem rngomndo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . 4 (1st𝑅) = (1st𝑅)
2 unmnd.1 . . . 4 𝐻 = (2nd𝑅)
3 eqid 2818 . . . 4 ran (1st𝑅) = ran (1st𝑅)
41, 2, 3rngosm 35059 . . 3 (𝑅 ∈ RingOps → 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅))
51, 2, 3rngoass 35065 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
65ralrimivvva 3189 . . 3 (𝑅 ∈ RingOps → ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
71, 2, 3rngoi 35058 . . . 4 (𝑅 ∈ RingOps → (((1st𝑅) ∈ AbelOp ∧ 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)) ∧ (∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦(1st𝑅)𝑧)) = ((𝑥𝐻𝑦)(1st𝑅)(𝑥𝐻𝑧)) ∧ ((𝑥(1st𝑅)𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)(1st𝑅)(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
87simprrd 770 . . 3 (𝑅 ∈ RingOps → ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
92, 1rngorn1 35092 . . . 4 (𝑅 ∈ RingOps → ran (1st𝑅) = dom dom 𝐻)
10 xpid11 5795 . . . . . . . 8 ((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ↔ dom dom 𝐻 = ran (1st𝑅))
1110biimpri 229 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)))
12 feq23 6491 . . . . . . 7 (((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ∧ dom dom 𝐻 = ran (1st𝑅)) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
1311, 12mpancom 684 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
14 raleq 3403 . . . . . . . 8 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1514raleqbi1dv 3401 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1615raleqbi1dv 3401 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
17 raleq 3403 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1817rexeqbi1dv 3402 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1913, 16, 183anbi123d 1427 . . . . 5 (dom dom 𝐻 = ran (1st𝑅) → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
2019eqcoms 2826 . . . 4 (ran (1st𝑅) = dom dom 𝐻 → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
219, 20syl 17 . . 3 (𝑅 ∈ RingOps → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
224, 6, 8, 21mpbir3and 1334 . 2 (𝑅 ∈ RingOps → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
23 fvex 6676 . . . 4 (2nd𝑅) ∈ V
24 eleq1 2897 . . . 4 (𝐻 = (2nd𝑅) → (𝐻 ∈ V ↔ (2nd𝑅) ∈ V))
2523, 24mpbiri 259 . . 3 (𝐻 = (2nd𝑅) → 𝐻 ∈ V)
26 eqid 2818 . . . 4 dom dom 𝐻 = dom dom 𝐻
2726ismndo1 35032 . . 3 (𝐻 ∈ V → (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
282, 25, 27mp2b 10 . 2 (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
2922, 28sylibr 235 1 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  Vcvv 3492   × cxp 5546  dom cdm 5548  ran crn 5549  wf 6344  cfv 6348  (class class class)co 7145  1st c1st 7676  2nd c2nd 7677  AbelOpcablo 28248  MndOpcmndo 35025  RingOpscrngo 35053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356  df-ov 7148  df-1st 7678  df-2nd 7679  df-grpo 28197  df-ablo 28249  df-ass 35002  df-exid 35004  df-mgmOLD 35008  df-sgrOLD 35020  df-mndo 35026  df-rngo 35054
This theorem is referenced by:  rngoidmlem  35095  rngo1cl  35098  isdrngo2  35117
  Copyright terms: Public domain W3C validator