Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1r Structured version   Visualization version   GIF version

Theorem rngonegmn1r 32694
Description: Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1 𝐺 = (1st𝑅)
ringneg.2 𝐻 = (2nd𝑅)
ringneg.3 𝑋 = ran 𝐺
ringneg.4 𝑁 = (inv‘𝐺)
ringneg.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngonegmn1r ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐻(𝑁𝑈)))

Proof of Theorem rngonegmn1r
StepHypRef Expression
1 ringneg.3 . . . . . . . . 9 𝑋 = ran 𝐺
2 ringneg.1 . . . . . . . . . 10 𝐺 = (1st𝑅)
32rneqi 5259 . . . . . . . . 9 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2631 . . . . . . . 8 𝑋 = ran (1st𝑅)
5 ringneg.2 . . . . . . . 8 𝐻 = (2nd𝑅)
6 ringneg.5 . . . . . . . 8 𝑈 = (GId‘𝐻)
74, 5, 6rngo1cl 32691 . . . . . . 7 (𝑅 ∈ RingOps → 𝑈𝑋)
8 ringneg.4 . . . . . . . 8 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 32679 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑁𝑈) ∈ 𝑋)
107, 9mpdan 698 . . . . . 6 (𝑅 ∈ RingOps → (𝑁𝑈) ∈ 𝑋)
1110adantr 479 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝑈) ∈ 𝑋)
127adantr 479 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑈𝑋)
1311, 12jca 552 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝑈) ∈ 𝑋𝑈𝑋))
142, 5, 1rngodi 32656 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐴𝑋 ∧ (𝑁𝑈) ∈ 𝑋𝑈𝑋)) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)))
15143exp2 1276 . . . . 5 (𝑅 ∈ RingOps → (𝐴𝑋 → ((𝑁𝑈) ∈ 𝑋 → (𝑈𝑋 → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈))))))
1615imp43 618 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ ((𝑁𝑈) ∈ 𝑋𝑈𝑋)) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)))
1713, 16mpdan 698 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)))
18 eqid 2609 . . . . . . . 8 (GId‘𝐺) = (GId‘𝐺)
192, 1, 8, 18rngoaddneg2 32681 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → ((𝑁𝑈)𝐺𝑈) = (GId‘𝐺))
207, 19mpdan 698 . . . . . 6 (𝑅 ∈ RingOps → ((𝑁𝑈)𝐺𝑈) = (GId‘𝐺))
2120adantr 479 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝑈)𝐺𝑈) = (GId‘𝐺))
2221oveq2d 6542 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = (𝐴𝐻(GId‘𝐺)))
2318, 1, 2, 5rngorz 32675 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(GId‘𝐺)) = (GId‘𝐺))
2422, 23eqtrd 2643 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = (GId‘𝐺))
255, 4, 6rngoridm 32690 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑈) = 𝐴)
2625oveq2d 6542 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺𝐴))
2717, 24, 263eqtr3rd 2652 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺))
282, 5, 1rngocl 32653 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ (𝑁𝑈) ∈ 𝑋) → (𝐴𝐻(𝑁𝑈)) ∈ 𝑋)
2911, 28mpd3an3 1416 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(𝑁𝑈)) ∈ 𝑋)
302rngogrpo 32662 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
311, 18, 8grpoinvid2 26560 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ (𝐴𝐻(𝑁𝑈)) ∈ 𝑋) → ((𝑁𝐴) = (𝐴𝐻(𝑁𝑈)) ↔ ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺)))
3230, 31syl3an1 1350 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ (𝐴𝐻(𝑁𝑈)) ∈ 𝑋) → ((𝑁𝐴) = (𝐴𝐻(𝑁𝑈)) ↔ ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺)))
3329, 32mpd3an3 1416 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝐴) = (𝐴𝐻(𝑁𝑈)) ↔ ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺)))
3427, 33mpbird 245 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐻(𝑁𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  ran crn 5028  cfv 5789  (class class class)co 6526  1st c1st 7034  2nd c2nd 7035  GrpOpcgr 26520  GIdcgi 26521  invcgn 26522  RingOpscrngo 32646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4942  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-1st 7036  df-2nd 7037  df-grpo 26524  df-gid 26525  df-ginv 26526  df-ablo 26576  df-ass 32595  df-exid 32597  df-mgmOLD 32601  df-sgrOLD 32613  df-mndo 32619  df-rngo 32647
This theorem is referenced by:  rngonegrmul  32696
  Copyright terms: Public domain W3C validator