Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegmn1r Structured version   Visualization version   GIF version

Theorem rngonegmn1r 35222
Description: Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringneg.1 𝐺 = (1st𝑅)
ringneg.2 𝐻 = (2nd𝑅)
ringneg.3 𝑋 = ran 𝐺
ringneg.4 𝑁 = (inv‘𝐺)
ringneg.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
rngonegmn1r ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐻(𝑁𝑈)))

Proof of Theorem rngonegmn1r
StepHypRef Expression
1 ringneg.3 . . . . . . . . 9 𝑋 = ran 𝐺
2 ringneg.1 . . . . . . . . . 10 𝐺 = (1st𝑅)
32rneqi 5809 . . . . . . . . 9 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2846 . . . . . . . 8 𝑋 = ran (1st𝑅)
5 ringneg.2 . . . . . . . 8 𝐻 = (2nd𝑅)
6 ringneg.5 . . . . . . . 8 𝑈 = (GId‘𝐻)
74, 5, 6rngo1cl 35219 . . . . . . 7 (𝑅 ∈ RingOps → 𝑈𝑋)
8 ringneg.4 . . . . . . . 8 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 35207 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑁𝑈) ∈ 𝑋)
107, 9mpdan 685 . . . . . 6 (𝑅 ∈ RingOps → (𝑁𝑈) ∈ 𝑋)
1110adantr 483 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝑈) ∈ 𝑋)
127adantr 483 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝑈𝑋)
1311, 12jca 514 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝑈) ∈ 𝑋𝑈𝑋))
142, 5, 1rngodi 35184 . . . . . 6 ((𝑅 ∈ RingOps ∧ (𝐴𝑋 ∧ (𝑁𝑈) ∈ 𝑋𝑈𝑋)) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)))
15143exp2 1350 . . . . 5 (𝑅 ∈ RingOps → (𝐴𝑋 → ((𝑁𝑈) ∈ 𝑋 → (𝑈𝑋 → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈))))))
1615imp43 430 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ ((𝑁𝑈) ∈ 𝑋𝑈𝑋)) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)))
1713, 16mpdan 685 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)))
18 eqid 2823 . . . . . . . 8 (GId‘𝐺) = (GId‘𝐺)
192, 1, 8, 18rngoaddneg2 35209 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → ((𝑁𝑈)𝐺𝑈) = (GId‘𝐺))
207, 19mpdan 685 . . . . . 6 (𝑅 ∈ RingOps → ((𝑁𝑈)𝐺𝑈) = (GId‘𝐺))
2120adantr 483 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝑈)𝐺𝑈) = (GId‘𝐺))
2221oveq2d 7174 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = (𝐴𝐻(GId‘𝐺)))
2318, 1, 2, 5rngorz 35203 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(GId‘𝐺)) = (GId‘𝐺))
2422, 23eqtrd 2858 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻((𝑁𝑈)𝐺𝑈)) = (GId‘𝐺))
255, 4, 6rngoridm 35218 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻𝑈) = 𝐴)
2625oveq2d 7174 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝐴𝐻(𝑁𝑈))𝐺(𝐴𝐻𝑈)) = ((𝐴𝐻(𝑁𝑈))𝐺𝐴))
2717, 24, 263eqtr3rd 2867 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺))
282, 5, 1rngocl 35181 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ (𝑁𝑈) ∈ 𝑋) → (𝐴𝐻(𝑁𝑈)) ∈ 𝑋)
2911, 28mpd3an3 1458 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝐴𝐻(𝑁𝑈)) ∈ 𝑋)
302rngogrpo 35190 . . . 4 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
311, 18, 8grpoinvid2 28308 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋 ∧ (𝐴𝐻(𝑁𝑈)) ∈ 𝑋) → ((𝑁𝐴) = (𝐴𝐻(𝑁𝑈)) ↔ ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺)))
3230, 31syl3an1 1159 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ (𝐴𝐻(𝑁𝑈)) ∈ 𝑋) → ((𝑁𝐴) = (𝐴𝐻(𝑁𝑈)) ↔ ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺)))
3329, 32mpd3an3 1458 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑁𝐴) = (𝐴𝐻(𝑁𝑈)) ↔ ((𝐴𝐻(𝑁𝑈))𝐺𝐴) = (GId‘𝐺)))
3427, 33mpbird 259 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐻(𝑁𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  ran crn 5558  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  GrpOpcgr 28268  GIdcgi 28269  invcgn 28270  RingOpscrngo 35174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-1st 7691  df-2nd 7692  df-grpo 28272  df-gid 28273  df-ginv 28274  df-ablo 28324  df-ass 35123  df-exid 35125  df-mgmOLD 35129  df-sgrOLD 35141  df-mndo 35147  df-rngo 35175
This theorem is referenced by:  rngonegrmul  35224
  Copyright terms: Public domain W3C validator