Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngonegrmul Structured version   Visualization version   GIF version

Theorem rngonegrmul 35216
Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
ringnegmul.1 𝐺 = (1st𝑅)
ringnegmul.2 𝐻 = (2nd𝑅)
ringnegmul.3 𝑋 = ran 𝐺
ringnegmul.4 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
rngonegrmul ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = (𝐴𝐻(𝑁𝐵)))

Proof of Theorem rngonegrmul
StepHypRef Expression
1 ringnegmul.3 . . . . . . 7 𝑋 = ran 𝐺
2 ringnegmul.1 . . . . . . . 8 𝐺 = (1st𝑅)
32rneqi 5801 . . . . . . 7 ran 𝐺 = ran (1st𝑅)
41, 3eqtri 2844 . . . . . 6 𝑋 = ran (1st𝑅)
5 ringnegmul.2 . . . . . 6 𝐻 = (2nd𝑅)
6 eqid 2821 . . . . . 6 (GId‘𝐻) = (GId‘𝐻)
74, 5, 6rngo1cl 35211 . . . . 5 (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋)
8 ringnegmul.4 . . . . . 6 𝑁 = (inv‘𝐺)
92, 1, 8rngonegcl 35199 . . . . 5 ((𝑅 ∈ RingOps ∧ (GId‘𝐻) ∈ 𝑋) → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
107, 9mpdan 685 . . . 4 (𝑅 ∈ RingOps → (𝑁‘(GId‘𝐻)) ∈ 𝑋)
112, 5, 1rngoass 35178 . . . . . . 7 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋 ∧ (𝑁‘(GId‘𝐻)) ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))
12113exp2 1350 . . . . . 6 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐵𝑋 → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))))
1312com24 95 . . . . 5 (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐵𝑋 → (𝐴𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))))
1413com34 91 . . . 4 (𝑅 ∈ RingOps → ((𝑁‘(GId‘𝐻)) ∈ 𝑋 → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻))))))))
1510, 14mpd 15 . . 3 (𝑅 ∈ RingOps → (𝐴𝑋 → (𝐵𝑋 → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))))
16153imp 1107 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))
172, 5, 1rngocl 35173 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
18173expb 1116 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐻𝐵) ∈ 𝑋)
192, 5, 1, 8, 6rngonegmn1r 35214 . . . 4 ((𝑅 ∈ RingOps ∧ (𝐴𝐻𝐵) ∈ 𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))))
2018, 19syldan 593 . . 3 ((𝑅 ∈ RingOps ∧ (𝐴𝑋𝐵𝑋)) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))))
21203impb 1111 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = ((𝐴𝐻𝐵)𝐻(𝑁‘(GId‘𝐻))))
222, 5, 1, 8, 6rngonegmn1r 35214 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → (𝑁𝐵) = (𝐵𝐻(𝑁‘(GId‘𝐻))))
23223adant2 1127 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) = (𝐵𝐻(𝑁‘(GId‘𝐻))))
2423oveq2d 7166 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻(𝑁𝐵)) = (𝐴𝐻(𝐵𝐻(𝑁‘(GId‘𝐻)))))
2516, 21, 243eqtr4d 2866 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐻𝐵)) = (𝐴𝐻(𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  ran crn 5550  cfv 6349  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  GIdcgi 28261  invcgn 28262  RingOpscrngo 35166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-1st 7683  df-2nd 7684  df-grpo 28264  df-gid 28265  df-ginv 28266  df-ablo 28316  df-ass 35115  df-exid 35117  df-mgmOLD 35121  df-sgrOLD 35133  df-mndo 35139  df-rngo 35167
This theorem is referenced by:  rngosubdi  35217
  Copyright terms: Public domain W3C validator