![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngorn1 | Structured version Visualization version GIF version |
Description: In a unital ring the range of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnplrnml0.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
rnplrnml0.2 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngorn1 | ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnplrnml0.2 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1 | rngogrpo 34018 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) |
3 | grporndm 27669 | . . 3 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐺) |
5 | rnplrnml0.1 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | 5, 1 | rngodm1dm2 34040 | . 2 ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) |
7 | 4, 6 | eqtrd 2790 | 1 ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1628 ∈ wcel 2135 dom cdm 5262 ran crn 5263 ‘cfv 6045 1st c1st 7327 2nd c2nd 7328 GrpOpcgr 27648 RingOpscrngo 34002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-fo 6051 df-fv 6053 df-ov 6812 df-1st 7329 df-2nd 7330 df-grpo 27652 df-ablo 27704 df-rngo 34003 |
This theorem is referenced by: rngomndo 34043 |
Copyright terms: Public domain | W3C validator |