Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngosn3 Structured version   Visualization version   GIF version

Theorem rngosn3 33390
Description: Obsolete as of 25-Jan-2020. Use ring1zr 19207 or srg1zr 18461 instead. The only unital ring with a base set consisting in one element is the zero ring. (Contributed by FL, 13-Feb-2010.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
on1el3.1 𝐺 = (1st𝑅)
on1el3.2 𝑋 = ran 𝐺
Assertion
Ref Expression
rngosn3 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ 𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))

Proof of Theorem rngosn3
StepHypRef Expression
1 on1el3.1 . . . . . . . . . 10 𝐺 = (1st𝑅)
21rngogrpo 33376 . . . . . . . . 9 (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp)
3 on1el3.2 . . . . . . . . . 10 𝑋 = ran 𝐺
43grpofo 27223 . . . . . . . . 9 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)
5 fof 6077 . . . . . . . . 9 (𝐺:(𝑋 × 𝑋)–onto𝑋𝐺:(𝑋 × 𝑋)⟶𝑋)
62, 4, 53syl 18 . . . . . . . 8 (𝑅 ∈ RingOps → 𝐺:(𝑋 × 𝑋)⟶𝑋)
76adantr 481 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → 𝐺:(𝑋 × 𝑋)⟶𝑋)
8 id 22 . . . . . . . . 9 (𝑋 = {𝐴} → 𝑋 = {𝐴})
98sqxpeqd 5106 . . . . . . . 8 (𝑋 = {𝐴} → (𝑋 × 𝑋) = ({𝐴} × {𝐴}))
109, 8feq23d 6002 . . . . . . 7 (𝑋 = {𝐴} → (𝐺:(𝑋 × 𝑋)⟶𝑋𝐺:({𝐴} × {𝐴})⟶{𝐴}))
117, 10syl5ibcom 235 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} → 𝐺:({𝐴} × {𝐴})⟶{𝐴}))
12 fdm 6013 . . . . . . . . . 10 (𝐺:(𝑋 × 𝑋)⟶𝑋 → dom 𝐺 = (𝑋 × 𝑋))
137, 12syl 17 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → dom 𝐺 = (𝑋 × 𝑋))
1413eqcomd 2627 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 × 𝑋) = dom 𝐺)
15 fdm 6013 . . . . . . . . 9 (𝐺:({𝐴} × {𝐴})⟶{𝐴} → dom 𝐺 = ({𝐴} × {𝐴}))
1615eqeq2d 2631 . . . . . . . 8 (𝐺:({𝐴} × {𝐴})⟶{𝐴} → ((𝑋 × 𝑋) = dom 𝐺 ↔ (𝑋 × 𝑋) = ({𝐴} × {𝐴})))
1714, 16syl5ibcom 235 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝐺:({𝐴} × {𝐴})⟶{𝐴} → (𝑋 × 𝑋) = ({𝐴} × {𝐴})))
18 xpid11 5312 . . . . . . 7 ((𝑋 × 𝑋) = ({𝐴} × {𝐴}) ↔ 𝑋 = {𝐴})
1917, 18syl6ib 241 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝐺:({𝐴} × {𝐴})⟶{𝐴} → 𝑋 = {𝐴}))
2011, 19impbid 202 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ 𝐺:({𝐴} × {𝐴})⟶{𝐴}))
21 simpr 477 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → 𝐴𝐵)
22 xpsng 6366 . . . . . . 7 ((𝐴𝐵𝐴𝐵) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
2321, 22sylancom 700 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
2423feq2d 5993 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝐺:({𝐴} × {𝐴})⟶{𝐴} ↔ 𝐺:{⟨𝐴, 𝐴⟩}⟶{𝐴}))
25 opex 4898 . . . . . 6 𝐴, 𝐴⟩ ∈ V
26 fsng 6364 . . . . . 6 ((⟨𝐴, 𝐴⟩ ∈ V ∧ 𝐴𝐵) → (𝐺:{⟨𝐴, 𝐴⟩}⟶{𝐴} ↔ 𝐺 = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
2725, 21, 26sylancr 694 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝐺:{⟨𝐴, 𝐴⟩}⟶{𝐴} ↔ 𝐺 = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
2820, 24, 273bitrd 294 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ 𝐺 = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
291eqeq1i 2626 . . . 4 (𝐺 = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ↔ (1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})
3028, 29syl6bb 276 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ (1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
3130anbi1d 740 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ((𝑋 = {𝐴} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}) ↔ ((1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})))
32 eqid 2621 . . . . . . 7 (2nd𝑅) = (2nd𝑅)
331, 32, 3rngosm 33366 . . . . . 6 (𝑅 ∈ RingOps → (2nd𝑅):(𝑋 × 𝑋)⟶𝑋)
3433adantr 481 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (2nd𝑅):(𝑋 × 𝑋)⟶𝑋)
359, 8feq23d 6002 . . . . 5 (𝑋 = {𝐴} → ((2nd𝑅):(𝑋 × 𝑋)⟶𝑋 ↔ (2nd𝑅):({𝐴} × {𝐴})⟶{𝐴}))
3634, 35syl5ibcom 235 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} → (2nd𝑅):({𝐴} × {𝐴})⟶{𝐴}))
3723feq2d 5993 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ((2nd𝑅):({𝐴} × {𝐴})⟶{𝐴} ↔ (2nd𝑅):{⟨𝐴, 𝐴⟩}⟶{𝐴}))
38 fsng 6364 . . . . . 6 ((⟨𝐴, 𝐴⟩ ∈ V ∧ 𝐴𝐵) → ((2nd𝑅):{⟨𝐴, 𝐴⟩}⟶{𝐴} ↔ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
3925, 21, 38sylancr 694 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ((2nd𝑅):{⟨𝐴, 𝐴⟩}⟶{𝐴} ↔ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
4037, 39bitrd 268 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → ((2nd𝑅):({𝐴} × {𝐴})⟶{𝐴} ↔ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
4136, 40sylibd 229 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} → (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}))
4241pm4.71d 665 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ (𝑋 = {𝐴} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})))
43 relrngo 33362 . . . . . 6 Rel RingOps
44 df-rel 5086 . . . . . 6 (Rel RingOps ↔ RingOps ⊆ (V × V))
4543, 44mpbi 220 . . . . 5 RingOps ⊆ (V × V)
4645sseli 3583 . . . 4 (𝑅 ∈ RingOps → 𝑅 ∈ (V × V))
4746adantr 481 . . 3 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → 𝑅 ∈ (V × V))
48 eqop 7160 . . 3 (𝑅 ∈ (V × V) → (𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ↔ ((1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})))
4947, 48syl 17 . 2 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩ ↔ ((1st𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩} ∧ (2nd𝑅) = {⟨⟨𝐴, 𝐴⟩, 𝐴⟩})))
5031, 42, 493bitr4d 300 1 ((𝑅 ∈ RingOps ∧ 𝐴𝐵) → (𝑋 = {𝐴} ↔ 𝑅 = ⟨{⟨⟨𝐴, 𝐴⟩, 𝐴⟩}, {⟨⟨𝐴, 𝐴⟩, 𝐴⟩}⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  Vcvv 3189  wss 3559  {csn 4153  cop 4159   × cxp 5077  dom cdm 5079  ran crn 5080  Rel wrel 5084  wf 5848  ontowfo 5850  cfv 5852  1st c1st 7118  2nd c2nd 7119  GrpOpcgr 27213  RingOpscrngo 33360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-1st 7120  df-2nd 7121  df-grpo 27217  df-ablo 27269  df-rngo 33361
This theorem is referenced by:  rngosn4  33391
  Copyright terms: Public domain W3C validator