![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngosn6 | Structured version Visualization version GIF version |
Description: Obsolete as of 25-Jan-2020. Use ringen1zr 19325 or srgen1zr 18576 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
on1el3.1 | ⊢ 𝐺 = (1st ‘𝑅) |
on1el3.2 | ⊢ 𝑋 = ran 𝐺 |
on1el3.3 | ⊢ 𝑍 = (GId‘𝐺) |
Ref | Expression |
---|---|
rngosn6 | ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜 ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on1el3.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | on1el3.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
3 | on1el3.3 | . . 3 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 1, 2, 3 | rngo0cl 33848 | . 2 ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) |
5 | 1, 2 | rngosn4 33854 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑍 ∈ 𝑋) → (𝑋 ≈ 1𝑜 ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
6 | 4, 5 | mpdan 703 | 1 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1𝑜 ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 {csn 4210 〈cop 4216 class class class wbr 4685 ran crn 5144 ‘cfv 5926 1st c1st 7208 1𝑜c1o 7598 ≈ cen 7994 GIdcgi 27472 RingOpscrngo 33823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-om 7108 df-1st 7210 df-2nd 7211 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-grpo 27475 df-gid 27476 df-ablo 27527 df-rngo 33824 |
This theorem is referenced by: dvrunz 33883 |
Copyright terms: Public domain | W3C validator |