Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoueqz Structured version   Visualization version   GIF version

Theorem rngoueqz 35220
Description: Obsolete as of 23-Jan-2020. Use 0ring01eqbi 20048 instead. In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uznzr.1 𝐺 = (1st𝑅)
uznzr.2 𝐻 = (2nd𝑅)
uznzr.3 𝑍 = (GId‘𝐺)
uznzr.4 𝑈 = (GId‘𝐻)
uznzr.5 𝑋 = ran 𝐺
Assertion
Ref Expression
rngoueqz (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))

Proof of Theorem rngoueqz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uznzr.1 . . . 4 𝐺 = (1st𝑅)
2 uznzr.5 . . . 4 𝑋 = ran 𝐺
3 uznzr.3 . . . 4 𝑍 = (GId‘𝐺)
41, 2, 3rngo0cl 35199 . . 3 (𝑅 ∈ RingOps → 𝑍𝑋)
5 en1eqsn 8750 . . . . . 6 ((𝑍𝑋𝑋 ≈ 1o) → 𝑋 = {𝑍})
61rneqi 5809 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
7 uznzr.2 . . . . . . . 8 𝐻 = (2nd𝑅)
8 uznzr.4 . . . . . . . 8 𝑈 = (GId‘𝐻)
96, 7, 8rngo1cl 35219 . . . . . . 7 (𝑅 ∈ RingOps → 𝑈 ∈ ran 𝐺)
10 eleq2 2903 . . . . . . . . . 10 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
1110biimpd 231 . . . . . . . . 9 (𝑋 = {𝑍} → (𝑈𝑋𝑈 ∈ {𝑍}))
12 elsni 4586 . . . . . . . . 9 (𝑈 ∈ {𝑍} → 𝑈 = 𝑍)
1311, 12syl6com 37 . . . . . . . 8 (𝑈𝑋 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
142eqcomi 2832 . . . . . . . 8 ran 𝐺 = 𝑋
1513, 14eleq2s 2933 . . . . . . 7 (𝑈 ∈ ran 𝐺 → (𝑋 = {𝑍} → 𝑈 = 𝑍))
169, 15syl 17 . . . . . 6 (𝑅 ∈ RingOps → (𝑋 = {𝑍} → 𝑈 = 𝑍))
175, 16syl5com 31 . . . . 5 ((𝑍𝑋𝑋 ≈ 1o) → (𝑅 ∈ RingOps → 𝑈 = 𝑍))
1817ex 415 . . . 4 (𝑍𝑋 → (𝑋 ≈ 1o → (𝑅 ∈ RingOps → 𝑈 = 𝑍)))
1918com23 86 . . 3 (𝑍𝑋 → (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍)))
204, 19mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
211, 2rngone0 35191 . . 3 (𝑅 ∈ RingOps → 𝑋 ≠ ∅)
22 oveq2 7166 . . . . . 6 (𝑈 = 𝑍 → (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
2322ralrimivw 3185 . . . . 5 (𝑈 = 𝑍 → ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍))
243, 2, 1, 7rngorz 35203 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑍) = 𝑍)
2524ralrimiva 3184 . . . . . 6 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍)
262, 6eqtri 2846 . . . . . . . . 9 𝑋 = ran (1st𝑅)
277, 26, 8rngoridm 35218 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑥𝐻𝑈) = 𝑥)
2827ralrimiva 3184 . . . . . . 7 (𝑅 ∈ RingOps → ∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥)
29 r19.26 3172 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ↔ (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)))
30 r19.26 3172 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) ↔ (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍))
31 eqtr 2843 . . . . . . . . . . . . . . . . . 18 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → 𝑥 = (𝑥𝐻𝑍))
32 eqtr 2843 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = (𝑥𝐻𝑍) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3332ex 415 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3431, 33syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥 = (𝑥𝐻𝑈) ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍))
3534ex 415 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑥𝐻𝑈) → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3635eqcoms 2831 . . . . . . . . . . . . . . 15 ((𝑥𝐻𝑈) = 𝑥 → ((𝑥𝐻𝑈) = (𝑥𝐻𝑍) → ((𝑥𝐻𝑍) = 𝑍𝑥 = 𝑍)))
3736imp31 420 . . . . . . . . . . . . . 14 ((((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → 𝑥 = 𝑍)
3837ralimi 3162 . . . . . . . . . . . . 13 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → ∀𝑥𝑋 𝑥 = 𝑍)
39 eqsn 4764 . . . . . . . . . . . . . . 15 (𝑋 ≠ ∅ → (𝑋 = {𝑍} ↔ ∀𝑥𝑋 𝑥 = 𝑍))
40 ensn1g 8576 . . . . . . . . . . . . . . . . 17 (𝑍𝑋 → {𝑍} ≈ 1o)
414, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑅 ∈ RingOps → {𝑍} ≈ 1o)
42 breq1 5071 . . . . . . . . . . . . . . . 16 (𝑋 = {𝑍} → (𝑋 ≈ 1o ↔ {𝑍} ≈ 1o))
4341, 42syl5ibr 248 . . . . . . . . . . . . . . 15 (𝑋 = {𝑍} → (𝑅 ∈ RingOps → 𝑋 ≈ 1o))
4439, 43syl6bir 256 . . . . . . . . . . . . . 14 (𝑋 ≠ ∅ → (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → 𝑋 ≈ 1o)))
4544com3l 89 . . . . . . . . . . . . 13 (∀𝑥𝑋 𝑥 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4638, 45syl 17 . . . . . . . . . . . 12 (∀𝑥𝑋 (((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4730, 46sylbir 237 . . . . . . . . . . 11 ((∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) ∧ ∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍) → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
4847ex 415 . . . . . . . . . 10 (∀𝑥𝑋 ((𝑥𝐻𝑈) = 𝑥 ∧ (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
4929, 48sylbir 237 . . . . . . . . 9 ((∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 ∧ ∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍)) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5049ex 415 . . . . . . . 8 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5150com24 95 . . . . . . 7 (∀𝑥𝑋 (𝑥𝐻𝑈) = 𝑥 → (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))))
5228, 51mpcom 38 . . . . . 6 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑍) = 𝑍 → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o))))
5325, 52mpd 15 . . . . 5 (𝑅 ∈ RingOps → (∀𝑥𝑋 (𝑥𝐻𝑈) = (𝑥𝐻𝑍) → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5423, 53syl5com 31 . . . 4 (𝑈 = 𝑍 → (𝑅 ∈ RingOps → (𝑋 ≠ ∅ → 𝑋 ≈ 1o)))
5554com13 88 . . 3 (𝑋 ≠ ∅ → (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o)))
5621, 55mpcom 38 . 2 (𝑅 ∈ RingOps → (𝑈 = 𝑍𝑋 ≈ 1o))
5720, 56impbid 214 1 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  c0 4293  {csn 4569   class class class wbr 5068  ran crn 5558  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  1oc1o 8097  cen 8508  GIdcgi 28269  RingOpscrngo 35174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-om 7583  df-1st 7691  df-2nd 7692  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-grpo 28272  df-gid 28273  df-ablo 28324  df-ass 35123  df-exid 35125  df-mgmOLD 35129  df-sgrOLD 35141  df-mndo 35147  df-rngo 35175
This theorem is referenced by:  dvrunz  35234  isdmn3  35354
  Copyright terms: Public domain W3C validator