MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngsubdir Structured version   Visualization version   GIF version

Theorem rngsubdir 18365
Description: Ring multiplication distributes over subtraction. (subdir 10311 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b 𝐵 = (Base‘𝑅)
ringsubdi.t · = (.r𝑅)
ringsubdi.m = (-g𝑅)
ringsubdi.r (𝜑𝑅 ∈ Ring)
ringsubdi.x (𝜑𝑋𝐵)
ringsubdi.y (𝜑𝑌𝐵)
ringsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
rngsubdir (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))

Proof of Theorem rngsubdir
StepHypRef Expression
1 ringsubdi.r . . . 4 (𝜑𝑅 ∈ Ring)
2 ringsubdi.x . . . 4 (𝜑𝑋𝐵)
3 ringgrp 18317 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
41, 3syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
5 ringsubdi.y . . . . 5 (𝜑𝑌𝐵)
6 ringsubdi.b . . . . . 6 𝐵 = (Base‘𝑅)
7 eqid 2605 . . . . . 6 (invg𝑅) = (invg𝑅)
86, 7grpinvcl 17232 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑌𝐵) → ((invg𝑅)‘𝑌) ∈ 𝐵)
94, 5, 8syl2anc 690 . . . 4 (𝜑 → ((invg𝑅)‘𝑌) ∈ 𝐵)
10 ringsubdi.z . . . 4 (𝜑𝑍𝐵)
11 eqid 2605 . . . . 5 (+g𝑅) = (+g𝑅)
12 ringsubdi.t . . . . 5 · = (.r𝑅)
136, 11, 12ringdir 18332 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ ((invg𝑅)‘𝑌) ∈ 𝐵𝑍𝐵)) → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
141, 2, 9, 10, 13syl13anc 1319 . . 3 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)))
156, 12, 7, 1, 5, 10ringmneg1 18361 . . . 4 (𝜑 → (((invg𝑅)‘𝑌) · 𝑍) = ((invg𝑅)‘(𝑌 · 𝑍)))
1615oveq2d 6539 . . 3 (𝜑 → ((𝑋 · 𝑍)(+g𝑅)(((invg𝑅)‘𝑌) · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
1714, 16eqtrd 2639 . 2 (𝜑 → ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
18 ringsubdi.m . . . . 5 = (-g𝑅)
196, 11, 7, 18grpsubval 17230 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
202, 5, 19syl2anc 690 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑅)((invg𝑅)‘𝑌)))
2120oveq1d 6538 . 2 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋(+g𝑅)((invg𝑅)‘𝑌)) · 𝑍))
226, 12ringcl 18326 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
231, 2, 10, 22syl3anc 1317 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
246, 12ringcl 18326 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵𝑍𝐵) → (𝑌 · 𝑍) ∈ 𝐵)
251, 5, 10, 24syl3anc 1317 . . 3 (𝜑 → (𝑌 · 𝑍) ∈ 𝐵)
266, 11, 7, 18grpsubval 17230 . . 3 (((𝑋 · 𝑍) ∈ 𝐵 ∧ (𝑌 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2723, 25, 26syl2anc 690 . 2 (𝜑 → ((𝑋 · 𝑍) (𝑌 · 𝑍)) = ((𝑋 · 𝑍)(+g𝑅)((invg𝑅)‘(𝑌 · 𝑍))))
2817, 21, 273eqtr4d 2649 1 (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1975  cfv 5786  (class class class)co 6523  Basecbs 15637  +gcplusg 15710  .rcmulr 15711  Grpcgrp 17187  invgcminusg 17188  -gcsg 17189  Ringcrg 18312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-plusg 15723  df-0g 15867  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-grp 17190  df-minusg 17191  df-sbg 17192  df-mgp 18255  df-ur 18267  df-ring 18314
This theorem is referenced by:  2idlcpbl  18997  cpmadugsumfi  20439  nrgdsdir  22209  nrginvrcnlem  22234  orngrmulle  28939  lidldomn1  41709
  Copyright terms: Public domain W3C validator