Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngunsnply Structured version   Visualization version   GIF version

Theorem rngunsnply 36558
Description: Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
rngunsnply.b (𝜑𝐵 ∈ (SubRing‘ℂfld))
rngunsnply.x (𝜑𝑋 ∈ ℂ)
rngunsnply.s (𝜑𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
Assertion
Ref Expression
rngunsnply (𝜑 → (𝑉𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
Distinct variable groups:   𝜑,𝑝   𝐵,𝑝   𝑋,𝑝   𝑉,𝑝
Allowed substitution hint:   𝑆(𝑝)

Proof of Theorem rngunsnply
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngunsnply.s . . 3 (𝜑𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
21eleq2d 2672 . 2 (𝜑 → (𝑉𝑆𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
3 cnring 19533 . . . . . . 7 fld ∈ Ring
43a1i 11 . . . . . 6 (𝜑 → ℂfld ∈ Ring)
5 cnfldbas 19517 . . . . . . 7 ℂ = (Base‘ℂfld)
65a1i 11 . . . . . 6 (𝜑 → ℂ = (Base‘ℂfld))
7 rngunsnply.b . . . . . . . 8 (𝜑𝐵 ∈ (SubRing‘ℂfld))
85subrgss 18550 . . . . . . . 8 (𝐵 ∈ (SubRing‘ℂfld) → 𝐵 ⊆ ℂ)
97, 8syl 17 . . . . . . 7 (𝜑𝐵 ⊆ ℂ)
10 rngunsnply.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
1110snssd 4280 . . . . . . 7 (𝜑 → {𝑋} ⊆ ℂ)
129, 11unssd 3750 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ ℂ)
13 eqidd 2610 . . . . . 6 (𝜑 → (RingSpan‘ℂfld) = (RingSpan‘ℂfld))
14 eqidd 2610 . . . . . 6 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
15 eqidd 2610 . . . . . . 7 (𝜑 → (ℂflds {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) = (ℂflds {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}))
16 cnfld0 19535 . . . . . . . 8 0 = (0g‘ℂfld)
1716a1i 11 . . . . . . 7 (𝜑 → 0 = (0g‘ℂfld))
18 cnfldadd 19518 . . . . . . . 8 + = (+g‘ℂfld)
1918a1i 11 . . . . . . 7 (𝜑 → + = (+g‘ℂfld))
20 plyf 23675 . . . . . . . . . . . 12 (𝑝 ∈ (Poly‘𝐵) → 𝑝:ℂ⟶ℂ)
21 ffvelrn 6250 . . . . . . . . . . . 12 ((𝑝:ℂ⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝑝𝑋) ∈ ℂ)
2220, 10, 21syl2anr 493 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑝𝑋) ∈ ℂ)
23 eleq1 2675 . . . . . . . . . . 11 (𝑎 = (𝑝𝑋) → (𝑎 ∈ ℂ ↔ (𝑝𝑋) ∈ ℂ))
2422, 23syl5ibrcom 235 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑎 = (𝑝𝑋) → 𝑎 ∈ ℂ))
2524rexlimdva 3012 . . . . . . . . 9 (𝜑 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) → 𝑎 ∈ ℂ))
2625ss2abdv 3637 . . . . . . . 8 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ⊆ {𝑎𝑎 ∈ ℂ})
27 abid2 2731 . . . . . . . . 9 {𝑎𝑎 ∈ ℂ} = ℂ
2827, 5eqtri 2631 . . . . . . . 8 {𝑎𝑎 ∈ ℂ} = (Base‘ℂfld)
2926, 28syl6sseq 3613 . . . . . . 7 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ⊆ (Base‘ℂfld))
30 abid2 2731 . . . . . . . . 9 {𝑎𝑎𝐵} = 𝐵
31 plyconst 23683 . . . . . . . . . . . . 13 ((𝐵 ⊆ ℂ ∧ 𝑎𝐵) → (ℂ × {𝑎}) ∈ (Poly‘𝐵))
329, 31sylan 486 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → (ℂ × {𝑎}) ∈ (Poly‘𝐵))
3310adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑎𝐵) → 𝑋 ∈ ℂ)
34 vex 3175 . . . . . . . . . . . . . . 15 𝑎 ∈ V
3534fvconst2 6352 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((ℂ × {𝑎})‘𝑋) = 𝑎)
3633, 35syl 17 . . . . . . . . . . . . 13 ((𝜑𝑎𝐵) → ((ℂ × {𝑎})‘𝑋) = 𝑎)
3736eqcomd 2615 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑎 = ((ℂ × {𝑎})‘𝑋))
38 fveq1 6087 . . . . . . . . . . . . . 14 (𝑝 = (ℂ × {𝑎}) → (𝑝𝑋) = ((ℂ × {𝑎})‘𝑋))
3938eqeq2d 2619 . . . . . . . . . . . . 13 (𝑝 = (ℂ × {𝑎}) → (𝑎 = (𝑝𝑋) ↔ 𝑎 = ((ℂ × {𝑎})‘𝑋)))
4039rspcev 3281 . . . . . . . . . . . 12 (((ℂ × {𝑎}) ∈ (Poly‘𝐵) ∧ 𝑎 = ((ℂ × {𝑎})‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋))
4132, 37, 40syl2anc 690 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋))
4241ex 448 . . . . . . . . . 10 (𝜑 → (𝑎𝐵 → ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)))
4342ss2abdv 3637 . . . . . . . . 9 (𝜑 → {𝑎𝑎𝐵} ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
4430, 43syl5eqssr 3612 . . . . . . . 8 (𝜑𝐵 ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
45 subrgsubg 18555 . . . . . . . . . 10 (𝐵 ∈ (SubRing‘ℂfld) → 𝐵 ∈ (SubGrp‘ℂfld))
467, 45syl 17 . . . . . . . . 9 (𝜑𝐵 ∈ (SubGrp‘ℂfld))
4716subg0cl 17371 . . . . . . . . 9 (𝐵 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝐵)
4846, 47syl 17 . . . . . . . 8 (𝜑 → 0 ∈ 𝐵)
4944, 48sseldd 3568 . . . . . . 7 (𝜑 → 0 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
50 biid 249 . . . . . . . . 9 (𝜑𝜑)
51 vex 3175 . . . . . . . . . 10 𝑏 ∈ V
52 eqeq1 2613 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑎 = (𝑝𝑋) ↔ 𝑏 = (𝑝𝑋)))
5352rexbidv 3033 . . . . . . . . . . 11 (𝑎 = 𝑏 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑏 = (𝑝𝑋)))
54 fveq1 6087 . . . . . . . . . . . . 13 (𝑝 = 𝑒 → (𝑝𝑋) = (𝑒𝑋))
5554eqeq2d 2619 . . . . . . . . . . . 12 (𝑝 = 𝑒 → (𝑏 = (𝑝𝑋) ↔ 𝑏 = (𝑒𝑋)))
5655cbvrexv 3147 . . . . . . . . . . 11 (∃𝑝 ∈ (Poly‘𝐵)𝑏 = (𝑝𝑋) ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋))
5753, 56syl6bb 274 . . . . . . . . . 10 (𝑎 = 𝑏 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋)))
5851, 57elab 3318 . . . . . . . . 9 (𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋))
59 vex 3175 . . . . . . . . . 10 𝑐 ∈ V
60 eqeq1 2613 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (𝑎 = (𝑝𝑋) ↔ 𝑐 = (𝑝𝑋)))
6160rexbidv 3033 . . . . . . . . . . 11 (𝑎 = 𝑐 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑐 = (𝑝𝑋)))
62 fveq1 6087 . . . . . . . . . . . . 13 (𝑝 = 𝑑 → (𝑝𝑋) = (𝑑𝑋))
6362eqeq2d 2619 . . . . . . . . . . . 12 (𝑝 = 𝑑 → (𝑐 = (𝑝𝑋) ↔ 𝑐 = (𝑑𝑋)))
6463cbvrexv 3147 . . . . . . . . . . 11 (∃𝑝 ∈ (Poly‘𝐵)𝑐 = (𝑝𝑋) ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋))
6561, 64syl6bb 274 . . . . . . . . . 10 (𝑎 = 𝑐 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)))
6659, 65elab 3318 . . . . . . . . 9 (𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋))
67 simplr 787 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑒 ∈ (Poly‘𝐵))
68 simpr 475 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑑 ∈ (Poly‘𝐵))
6918subrgacl 18560 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐵𝑏𝐵) → (𝑎 + 𝑏) ∈ 𝐵)
70693expb 1257 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ (SubRing‘ℂfld) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
717, 70sylan 486 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7271adantlr 746 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7372adantlr 746 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 + 𝑏) ∈ 𝐵)
7467, 68, 73plyadd 23694 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑒𝑓 + 𝑑) ∈ (Poly‘𝐵))
75 plyf 23675 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ (Poly‘𝐵) → 𝑒:ℂ⟶ℂ)
76 ffn 5944 . . . . . . . . . . . . . . . . . . 19 (𝑒:ℂ⟶ℂ → 𝑒 Fn ℂ)
7775, 76syl 17 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (Poly‘𝐵) → 𝑒 Fn ℂ)
7877ad2antlr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑒 Fn ℂ)
79 plyf 23675 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ (Poly‘𝐵) → 𝑑:ℂ⟶ℂ)
80 ffn 5944 . . . . . . . . . . . . . . . . . . 19 (𝑑:ℂ⟶ℂ → 𝑑 Fn ℂ)
8179, 80syl 17 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ (Poly‘𝐵) → 𝑑 Fn ℂ)
8281adantl 480 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑑 Fn ℂ)
83 cnex 9873 . . . . . . . . . . . . . . . . . 18 ℂ ∈ V
8483a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ℂ ∈ V)
8510ad2antrr 757 . . . . . . . . . . . . . . . . 17 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → 𝑋 ∈ ℂ)
86 fnfvof 6786 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn ℂ ∧ 𝑑 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → ((𝑒𝑓 + 𝑑)‘𝑋) = ((𝑒𝑋) + (𝑑𝑋)))
8778, 82, 84, 85, 86syl22anc 1318 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑓 + 𝑑)‘𝑋) = ((𝑒𝑋) + (𝑑𝑋)))
8887eqcomd 2615 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒𝑓 + 𝑑)‘𝑋))
89 fveq1 6087 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑒𝑓 + 𝑑) → (𝑝𝑋) = ((𝑒𝑓 + 𝑑)‘𝑋))
9089eqeq2d 2619 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒𝑓 + 𝑑) → (((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋) ↔ ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒𝑓 + 𝑑)‘𝑋)))
9190rspcev 3281 . . . . . . . . . . . . . . 15 (((𝑒𝑓 + 𝑑) ∈ (Poly‘𝐵) ∧ ((𝑒𝑋) + (𝑑𝑋)) = ((𝑒𝑓 + 𝑑)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋))
9274, 88, 91syl2anc 690 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋))
93 oveq2 6535 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑑𝑋) → ((𝑒𝑋) + 𝑐) = ((𝑒𝑋) + (𝑑𝑋)))
9493eqeq1d 2611 . . . . . . . . . . . . . . 15 (𝑐 = (𝑑𝑋) → (((𝑒𝑋) + 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋)))
9594rexbidv 3033 . . . . . . . . . . . . . 14 (𝑐 = (𝑑𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + (𝑑𝑋)) = (𝑝𝑋)))
9692, 95syl5ibrcom 235 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
9796rexlimdva 3012 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
98 oveq1 6534 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒𝑋) → (𝑏 + 𝑐) = ((𝑒𝑋) + 𝑐))
9998eqeq1d 2611 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((𝑏 + 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
10099rexbidv 3033 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋)))
101100imbi2d 328 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → ((∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋)) ↔ (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) + 𝑐) = (𝑝𝑋))))
10297, 101syl5ibrcom 235 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))))
103102rexlimdva 3012 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))))
1041033imp 1248 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) ∧ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
10550, 58, 66, 104syl3anb 1360 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
106 ovex 6555 . . . . . . . . 9 (𝑏 + 𝑐) ∈ V
107 eqeq1 2613 . . . . . . . . . 10 (𝑎 = (𝑏 + 𝑐) → (𝑎 = (𝑝𝑋) ↔ (𝑏 + 𝑐) = (𝑝𝑋)))
108107rexbidv 3033 . . . . . . . . 9 (𝑎 = (𝑏 + 𝑐) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋)))
109106, 108elab 3318 . . . . . . . 8 ((𝑏 + 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 + 𝑐) = (𝑝𝑋))
110105, 109sylibr 222 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → (𝑏 + 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
111 ax-1cn 9850 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
112 cnfldneg 19537 . . . . . . . . . . . . . . . . . 18 (1 ∈ ℂ → ((invg‘ℂfld)‘1) = -1)
113111, 112mp1i 13 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘ℂfld)‘1) = -1)
114 cnfld1 19536 . . . . . . . . . . . . . . . . . . . 20 1 = (1r‘ℂfld)
115114subrg1cl 18557 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (SubRing‘ℂfld) → 1 ∈ 𝐵)
1167, 115syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ 𝐵)
117 eqid 2609 . . . . . . . . . . . . . . . . . . 19 (invg‘ℂfld) = (invg‘ℂfld)
118117subginvcl 17372 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ (SubGrp‘ℂfld) ∧ 1 ∈ 𝐵) → ((invg‘ℂfld)‘1) ∈ 𝐵)
11946, 116, 118syl2anc 690 . . . . . . . . . . . . . . . . 17 (𝜑 → ((invg‘ℂfld)‘1) ∈ 𝐵)
120113, 119eqeltrrd 2688 . . . . . . . . . . . . . . . 16 (𝜑 → -1 ∈ 𝐵)
121 plyconst 23683 . . . . . . . . . . . . . . . 16 ((𝐵 ⊆ ℂ ∧ -1 ∈ 𝐵) → (ℂ × {-1}) ∈ (Poly‘𝐵))
1229, 120, 121syl2anc 690 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ × {-1}) ∈ (Poly‘𝐵))
123122adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (ℂ × {-1}) ∈ (Poly‘𝐵))
124 simpr 475 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑒 ∈ (Poly‘𝐵))
125 cnfldmul 19519 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℂfld)
126125subrgmcl 18561 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐵𝑏𝐵) → (𝑎 · 𝑏) ∈ 𝐵)
1271263expb 1257 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ (SubRing‘ℂfld) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
1287, 127sylan 486 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
129128adantlr 746 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
130123, 124, 72, 129plymul 23695 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((ℂ × {-1}) ∘𝑓 · 𝑒) ∈ (Poly‘𝐵))
131 ffvelrn 6250 . . . . . . . . . . . . . . . 16 ((𝑒:ℂ⟶ℂ ∧ 𝑋 ∈ ℂ) → (𝑒𝑋) ∈ ℂ)
13275, 10, 131syl2anr 493 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑒𝑋) ∈ ℂ)
133 cnfldneg 19537 . . . . . . . . . . . . . . 15 ((𝑒𝑋) ∈ ℂ → ((invg‘ℂfld)‘(𝑒𝑋)) = -(𝑒𝑋))
134132, 133syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((invg‘ℂfld)‘(𝑒𝑋)) = -(𝑒𝑋))
135 negex 10130 . . . . . . . . . . . . . . . . 17 -1 ∈ V
136 fnconstg 5991 . . . . . . . . . . . . . . . . 17 (-1 ∈ V → (ℂ × {-1}) Fn ℂ)
137135, 136mp1i 13 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (ℂ × {-1}) Fn ℂ)
13877adantl 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑒 Fn ℂ)
13983a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ℂ ∈ V)
14010adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → 𝑋 ∈ ℂ)
141 fnfvof 6786 . . . . . . . . . . . . . . . 16 ((((ℂ × {-1}) Fn ℂ ∧ 𝑒 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋) = (((ℂ × {-1})‘𝑋) · (𝑒𝑋)))
142137, 138, 139, 140, 141syl22anc 1318 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋) = (((ℂ × {-1})‘𝑋) · (𝑒𝑋)))
143135fvconst2 6352 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ ℂ → ((ℂ × {-1})‘𝑋) = -1)
144140, 143syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((ℂ × {-1})‘𝑋) = -1)
145144oveq1d 6542 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1})‘𝑋) · (𝑒𝑋)) = (-1 · (𝑒𝑋)))
146132mulm1d 10332 . . . . . . . . . . . . . . 15 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (-1 · (𝑒𝑋)) = -(𝑒𝑋))
147142, 145, 1463eqtrd 2647 . . . . . . . . . . . . . 14 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋) = -(𝑒𝑋))
148134, 147eqtr4d 2646 . . . . . . . . . . . . 13 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋))
149 fveq1 6087 . . . . . . . . . . . . . . 15 (𝑝 = ((ℂ × {-1}) ∘𝑓 · 𝑒) → (𝑝𝑋) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋))
150149eqeq2d 2619 . . . . . . . . . . . . . 14 (𝑝 = ((ℂ × {-1}) ∘𝑓 · 𝑒) → (((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋) ↔ ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋)))
151150rspcev 3281 . . . . . . . . . . . . 13 ((((ℂ × {-1}) ∘𝑓 · 𝑒) ∈ (Poly‘𝐵) ∧ ((invg‘ℂfld)‘(𝑒𝑋)) = (((ℂ × {-1}) ∘𝑓 · 𝑒)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋))
152130, 148, 151syl2anc 690 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋))
153 fveq2 6088 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((invg‘ℂfld)‘𝑏) = ((invg‘ℂfld)‘(𝑒𝑋)))
154153eqeq1d 2611 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (((invg‘ℂfld)‘𝑏) = (𝑝𝑋) ↔ ((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋)))
155154rexbidv 3033 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘(𝑒𝑋)) = (𝑝𝑋)))
156152, 155syl5ibrcom 235 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
157156rexlimdva 3012 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
158157imp 443 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
15958, 158sylan2b 490 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
160 fvex 6098 . . . . . . . . 9 ((invg‘ℂfld)‘𝑏) ∈ V
161 eqeq1 2613 . . . . . . . . . 10 (𝑎 = ((invg‘ℂfld)‘𝑏) → (𝑎 = (𝑝𝑋) ↔ ((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
162161rexbidv 3033 . . . . . . . . 9 (𝑎 = ((invg‘ℂfld)‘𝑏) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋)))
163160, 162elab 3318 . . . . . . . 8 (((invg‘ℂfld)‘𝑏) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)((invg‘ℂfld)‘𝑏) = (𝑝𝑋))
164159, 163sylibr 222 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ((invg‘ℂfld)‘𝑏) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
165114a1i 11 . . . . . . 7 (𝜑 → 1 = (1r‘ℂfld))
166125a1i 11 . . . . . . 7 (𝜑 → · = (.r‘ℂfld))
16744, 116sseldd 3568 . . . . . . 7 (𝜑 → 1 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
168129adantlr 746 . . . . . . . . . . . . . . . 16 ((((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎 · 𝑏) ∈ 𝐵)
16967, 68, 73, 168plymul 23695 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑒𝑓 · 𝑑) ∈ (Poly‘𝐵))
170 fnfvof 6786 . . . . . . . . . . . . . . . . 17 (((𝑒 Fn ℂ ∧ 𝑑 Fn ℂ) ∧ (ℂ ∈ V ∧ 𝑋 ∈ ℂ)) → ((𝑒𝑓 · 𝑑)‘𝑋) = ((𝑒𝑋) · (𝑑𝑋)))
17178, 82, 84, 85, 170syl22anc 1318 . . . . . . . . . . . . . . . 16 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑓 · 𝑑)‘𝑋) = ((𝑒𝑋) · (𝑑𝑋)))
172171eqcomd 2615 . . . . . . . . . . . . . . 15 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒𝑓 · 𝑑)‘𝑋))
173 fveq1 6087 . . . . . . . . . . . . . . . . 17 (𝑝 = (𝑒𝑓 · 𝑑) → (𝑝𝑋) = ((𝑒𝑓 · 𝑑)‘𝑋))
174173eqeq2d 2619 . . . . . . . . . . . . . . . 16 (𝑝 = (𝑒𝑓 · 𝑑) → (((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋) ↔ ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒𝑓 · 𝑑)‘𝑋)))
175174rspcev 3281 . . . . . . . . . . . . . . 15 (((𝑒𝑓 · 𝑑) ∈ (Poly‘𝐵) ∧ ((𝑒𝑋) · (𝑑𝑋)) = ((𝑒𝑓 · 𝑑)‘𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋))
176169, 172, 175syl2anc 690 . . . . . . . . . . . . . 14 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋))
177 oveq2 6535 . . . . . . . . . . . . . . . 16 (𝑐 = (𝑑𝑋) → ((𝑒𝑋) · 𝑐) = ((𝑒𝑋) · (𝑑𝑋)))
178177eqeq1d 2611 . . . . . . . . . . . . . . 15 (𝑐 = (𝑑𝑋) → (((𝑒𝑋) · 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋)))
179178rexbidv 3033 . . . . . . . . . . . . . 14 (𝑐 = (𝑑𝑋) → (∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · (𝑑𝑋)) = (𝑝𝑋)))
180176, 179syl5ibrcom 235 . . . . . . . . . . . . 13 (((𝜑𝑒 ∈ (Poly‘𝐵)) ∧ 𝑑 ∈ (Poly‘𝐵)) → (𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
181180rexlimdva 3012 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
182 oveq1 6534 . . . . . . . . . . . . . . 15 (𝑏 = (𝑒𝑋) → (𝑏 · 𝑐) = ((𝑒𝑋) · 𝑐))
183182eqeq1d 2611 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝑋) → ((𝑏 · 𝑐) = (𝑝𝑋) ↔ ((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
184183rexbidv 3033 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝑋) → (∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋)))
185184imbi2d 328 . . . . . . . . . . . 12 (𝑏 = (𝑒𝑋) → ((∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋)) ↔ (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)((𝑒𝑋) · 𝑐) = (𝑝𝑋))))
186181, 185syl5ibrcom 235 . . . . . . . . . . 11 ((𝜑𝑒 ∈ (Poly‘𝐵)) → (𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))))
187186rexlimdva 3012 . . . . . . . . . 10 (𝜑 → (∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) → (∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))))
1881873imp 1248 . . . . . . . . 9 ((𝜑 ∧ ∃𝑒 ∈ (Poly‘𝐵)𝑏 = (𝑒𝑋) ∧ ∃𝑑 ∈ (Poly‘𝐵)𝑐 = (𝑑𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
18950, 58, 66, 188syl3anb 1360 . . . . . . . 8 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
190 ovex 6555 . . . . . . . . 9 (𝑏 · 𝑐) ∈ V
191 eqeq1 2613 . . . . . . . . . 10 (𝑎 = (𝑏 · 𝑐) → (𝑎 = (𝑝𝑋) ↔ (𝑏 · 𝑐) = (𝑝𝑋)))
192191rexbidv 3033 . . . . . . . . 9 (𝑎 = (𝑏 · 𝑐) → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋)))
193190, 192elab 3318 . . . . . . . 8 ((𝑏 · 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)(𝑏 · 𝑐) = (𝑝𝑋))
194189, 193sylibr 222 . . . . . . 7 ((𝜑𝑏 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∧ 𝑐 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}) → (𝑏 · 𝑐) ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
19515, 17, 19, 29, 49, 110, 164, 165, 166, 167, 194, 4issubrngd2 18956 . . . . . 6 (𝜑 → {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ∈ (SubRing‘ℂfld))
196 plyid 23686 . . . . . . . . . . 11 ((𝐵 ⊆ ℂ ∧ 1 ∈ 𝐵) → Xp ∈ (Poly‘𝐵))
1979, 116, 196syl2anc 690 . . . . . . . . . 10 (𝜑Xp ∈ (Poly‘𝐵))
198 df-idp 23666 . . . . . . . . . . . 12 Xp = ( I ↾ ℂ)
199198fveq1i 6089 . . . . . . . . . . 11 (Xp𝑋) = (( I ↾ ℂ)‘𝑋)
200 fvresi 6322 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (( I ↾ ℂ)‘𝑋) = 𝑋)
20110, 200syl 17 . . . . . . . . . . 11 (𝜑 → (( I ↾ ℂ)‘𝑋) = 𝑋)
202199, 201syl5req 2656 . . . . . . . . . 10 (𝜑𝑋 = (Xp𝑋))
203 fveq1 6087 . . . . . . . . . . . 12 (𝑝 = Xp → (𝑝𝑋) = (Xp𝑋))
204203eqeq2d 2619 . . . . . . . . . . 11 (𝑝 = Xp → (𝑋 = (𝑝𝑋) ↔ 𝑋 = (Xp𝑋)))
205204rspcev 3281 . . . . . . . . . 10 ((Xp ∈ (Poly‘𝐵) ∧ 𝑋 = (Xp𝑋)) → ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋))
206197, 202, 205syl2anc 690 . . . . . . . . 9 (𝜑 → ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋))
207 eqeq1 2613 . . . . . . . . . . . 12 (𝑎 = 𝑋 → (𝑎 = (𝑝𝑋) ↔ 𝑋 = (𝑝𝑋)))
208207rexbidv 3033 . . . . . . . . . . 11 (𝑎 = 𝑋 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
209208elabg 3319 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
21010, 209syl 17 . . . . . . . . 9 (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑋 = (𝑝𝑋)))
211206, 210mpbird 245 . . . . . . . 8 (𝜑𝑋 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
212211snssd 4280 . . . . . . 7 (𝜑 → {𝑋} ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
21344, 212unssd 3750 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
2144, 6, 12, 13, 14, 195, 213rgspnmin 36556 . . . . 5 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ⊆ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)})
215214sseld 3566 . . . 4 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) → 𝑉 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)}))
216 fvex 6098 . . . . . . 7 (𝑝𝑋) ∈ V
217 eleq1 2675 . . . . . . 7 (𝑉 = (𝑝𝑋) → (𝑉 ∈ V ↔ (𝑝𝑋) ∈ V))
218216, 217mpbiri 246 . . . . . 6 (𝑉 = (𝑝𝑋) → 𝑉 ∈ V)
219218rexlimivw 3010 . . . . 5 (∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋) → 𝑉 ∈ V)
220 eqeq1 2613 . . . . . 6 (𝑎 = 𝑉 → (𝑎 = (𝑝𝑋) ↔ 𝑉 = (𝑝𝑋)))
221220rexbidv 3033 . . . . 5 (𝑎 = 𝑉 → (∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
222219, 221elab3 3326 . . . 4 (𝑉 ∈ {𝑎 ∣ ∃𝑝 ∈ (Poly‘𝐵)𝑎 = (𝑝𝑋)} ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋))
223215, 222syl6ib 239 . . 3 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) → ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
2244, 6, 12, 13, 14rgspncl 36554 . . . . . . 7 (𝜑 → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ∈ (SubRing‘ℂfld))
225224adantr 479 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ∈ (SubRing‘ℂfld))
226 simpr 475 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝑝 ∈ (Poly‘𝐵))
2274, 6, 12, 13, 14rgspnssid 36555 . . . . . . . . 9 (𝜑 → (𝐵 ∪ {𝑋}) ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
228227unssbd 3752 . . . . . . . 8 (𝜑 → {𝑋} ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
229 snidg 4152 . . . . . . . . 9 (𝑋 ∈ ℂ → 𝑋 ∈ {𝑋})
23010, 229syl 17 . . . . . . . 8 (𝜑𝑋 ∈ {𝑋})
231228, 230sseldd 3568 . . . . . . 7 (𝜑𝑋 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
232231adantr 479 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝑋 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
233227unssad 3751 . . . . . . 7 (𝜑𝐵 ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
234233adantr 479 . . . . . 6 ((𝜑𝑝 ∈ (Poly‘𝐵)) → 𝐵 ⊆ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
235225, 226, 232, 234cnsrplycl 36552 . . . . 5 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑝𝑋) ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})))
236 eleq1 2675 . . . . 5 (𝑉 = (𝑝𝑋) → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ↔ (𝑝𝑋) ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
237235, 236syl5ibrcom 235 . . . 4 ((𝜑𝑝 ∈ (Poly‘𝐵)) → (𝑉 = (𝑝𝑋) → 𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
238237rexlimdva 3012 . . 3 (𝜑 → (∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋) → 𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))))
239223, 238impbid 200 . 2 (𝜑 → (𝑉 ∈ ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋})) ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
2402, 239bitrd 266 1 (𝜑 → (𝑉𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  {cab 2595  wrex 2896  Vcvv 3172  cun 3537  wss 3539  {csn 4124   I cid 4938   × cxp 5026  cres 5030   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  𝑓 cof 6770  cc 9790  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  -cneg 10118  Basecbs 15641  s cress 15642  +gcplusg 15714  .rcmulr 15715  0gc0g 15869  invgcminusg 17192  SubGrpcsubg 17357  1rcur 18270  Ringcrg 18316  SubRingcsubrg 18545  RingSpancrgspn 18546  fldccnfld 19513  Polycply 23661  Xpcidp 23662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-rp 11665  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-0g 15871  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-grp 17194  df-minusg 17195  df-subg 17360  df-cmn 17964  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-subrg 18547  df-rgspn 18548  df-cnfld 19514  df-0p 23160  df-ply 23665  df-idp 23666  df-coe 23667  df-dgr 23668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator