Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngurd Structured version   Visualization version   GIF version

Theorem rngurd 29916
Description: Deduce the unit of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.)
Hypotheses
Ref Expression
rngurd.b (𝜑𝐵 = (Base‘𝑅))
rngurd.p (𝜑· = (.r𝑅))
rngurd.z (𝜑1𝐵)
rngurd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
rngurd.j ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
Assertion
Ref Expression
rngurd (𝜑1 = (1r𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, 1   𝑥, ·   𝜑,𝑥

Proof of Theorem rngurd
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2651 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2651 . . 3 (1r𝑅) = (1r𝑅)
41, 2, 3dfur2 18550 . 2 (1r𝑅) = (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
5 rngurd.z . . . 4 (𝜑1𝐵)
6 rngurd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
75, 6eleqtrd 2732 . . 3 (𝜑1 ∈ (Base‘𝑅))
8 rngurd.i . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
9 rngurd.j . . . . . 6 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
108, 9jca 553 . . . . 5 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
1110ralrimiva 2995 . . . 4 (𝜑 → ∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
12 rngurd.p . . . . . . . . 9 (𝜑· = (.r𝑅))
1312adantr 480 . . . . . . . 8 ((𝜑𝑥𝐵) → · = (.r𝑅))
1413oveqd 6707 . . . . . . 7 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = ( 1 (.r𝑅)𝑥))
1514eqeq1d 2653 . . . . . 6 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
1613oveqd 6707 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = (𝑥(.r𝑅) 1 ))
1716eqeq1d 2653 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑥 · 1 ) = 𝑥 ↔ (𝑥(.r𝑅) 1 ) = 𝑥))
1815, 17anbi12d 747 . . . . 5 ((𝜑𝑥𝐵) → ((( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ (( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
196, 18raleqbidva 3184 . . . 4 (𝜑 → (∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
2011, 19mpbid 222 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))
216eleq2d 2716 . . . . . . . 8 (𝜑 → (𝑒𝐵𝑒 ∈ (Base‘𝑅)))
2213oveqd 6707 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑒 · 𝑥) = (𝑒(.r𝑅)𝑥))
2322eqeq1d 2653 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(.r𝑅)𝑥) = 𝑥))
2413oveqd 6707 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑥 · 𝑒) = (𝑥(.r𝑅)𝑒))
2524eqeq1d 2653 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(.r𝑅)𝑒) = 𝑥))
2623, 25anbi12d 747 . . . . . . . . 9 ((𝜑𝑥𝐵) → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
276, 26raleqbidva 3184 . . . . . . . 8 (𝜑 → (∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
2821, 27anbi12d 747 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))))
298ralrimiva 2995 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
3029adantr 480 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
31 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
32 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → 𝑥 = 𝑒)
3332oveq2d 6706 . . . . . . . . . . . . 13 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → ( 1 · 𝑥) = ( 1 · 𝑒))
3433, 32eqeq12d 2666 . . . . . . . . . . . 12 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 · 𝑒) = 𝑒))
3531, 34rspcdv 3343 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (∀𝑥𝐵 ( 1 · 𝑥) = 𝑥 → ( 1 · 𝑒) = 𝑒))
3630, 35mpd 15 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ( 1 · 𝑒) = 𝑒)
3736adantrr 753 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 𝑒)
385adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 1𝐵)
39 simprr 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))
40 oveq2 6698 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑒 · 𝑥) = (𝑒 · 1 ))
41 id 22 . . . . . . . . . . . . . 14 (𝑥 = 1𝑥 = 1 )
4240, 41eqeq12d 2666 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒 · 1 ) = 1 ))
43 oveq1 6697 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑥 · 𝑒) = ( 1 · 𝑒))
4443, 41eqeq12d 2666 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑥 · 𝑒) = 𝑥 ↔ ( 1 · 𝑒) = 1 ))
4542, 44anbi12d 747 . . . . . . . . . . . 12 (𝑥 = 1 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 )))
4645rspcva 3338 . . . . . . . . . . 11 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 ))
4746simprd 478 . . . . . . . . . 10 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ( 1 · 𝑒) = 1 )
4838, 39, 47syl2anc 694 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 1 )
4937, 48eqtr3d 2687 . . . . . . . 8 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 𝑒 = 1 )
5049ex 449 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → 𝑒 = 1 ))
5128, 50sylbird 250 . . . . . 6 (𝜑 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
5251alrimiv 1895 . . . . 5 (𝜑 → ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
53 eleq1 2718 . . . . . . 7 (𝑒 = 1 → (𝑒 ∈ (Base‘𝑅) ↔ 1 ∈ (Base‘𝑅)))
54 oveq1 6697 . . . . . . . . . 10 (𝑒 = 1 → (𝑒(.r𝑅)𝑥) = ( 1 (.r𝑅)𝑥))
5554eqeq1d 2653 . . . . . . . . 9 (𝑒 = 1 → ((𝑒(.r𝑅)𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
56 oveq2 6698 . . . . . . . . . 10 (𝑒 = 1 → (𝑥(.r𝑅)𝑒) = (𝑥(.r𝑅) 1 ))
5756eqeq1d 2653 . . . . . . . . 9 (𝑒 = 1 → ((𝑥(.r𝑅)𝑒) = 𝑥 ↔ (𝑥(.r𝑅) 1 ) = 𝑥))
5855, 57anbi12d 747 . . . . . . . 8 (𝑒 = 1 → (((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥) ↔ (( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
5958ralbidv 3015 . . . . . . 7 (𝑒 = 1 → (∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
6053, 59anbi12d 747 . . . . . 6 (𝑒 = 1 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))))
6160eqeu 3410 . . . . 5 (( 1 ∈ (Base‘𝑅) ∧ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ∧ ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 )) → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
627, 7, 20, 52, 61syl121anc 1371 . . . 4 (𝜑 → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
6360iota2 5915 . . . 4 (( 1𝐵 ∧ ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
645, 62, 63syl2anc 694 . . 3 (𝜑 → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
657, 20, 64mpbi2and 976 . 2 (𝜑 → (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 )
664, 65syl5req 2698 1 (𝜑1 = (1r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wcel 2030  ∃!weu 2498  wral 2941  cio 5887  cfv 5926  (class class class)co 6690  Basecbs 15904  .rcmulr 15989  1rcur 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgp 18536  df-ur 18548
This theorem is referenced by:  ress1r  29917
  Copyright terms: Public domain W3C validator