Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngurd Structured version   Visualization version   GIF version

Theorem rngurd 28915
Description: Deduce the unit of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.)
Hypotheses
Ref Expression
rngurd.b (𝜑𝐵 = (Base‘𝑅))
rngurd.p (𝜑· = (.r𝑅))
rngurd.z (𝜑1𝐵)
rngurd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
rngurd.j ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
Assertion
Ref Expression
rngurd (𝜑1 = (1r𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, 1   𝑥, ·   𝜑,𝑥

Proof of Theorem rngurd
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 eqid 2514 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2514 . . 3 (.r𝑅) = (.r𝑅)
3 eqid 2514 . . 3 (1r𝑅) = (1r𝑅)
41, 2, 3dfur2 18234 . 2 (1r𝑅) = (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
5 rngurd.z . . . 4 (𝜑1𝐵)
6 rngurd.b . . . 4 (𝜑𝐵 = (Base‘𝑅))
75, 6eleqtrd 2594 . . 3 (𝜑1 ∈ (Base‘𝑅))
8 rngurd.i . . . . . 6 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
9 rngurd.j . . . . . 6 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
108, 9jca 552 . . . . 5 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
1110ralrimiva 2853 . . . 4 (𝜑 → ∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥))
12 rngurd.p . . . . . . . . 9 (𝜑· = (.r𝑅))
1312adantr 479 . . . . . . . 8 ((𝜑𝑥𝐵) → · = (.r𝑅))
1413oveqd 6443 . . . . . . 7 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = ( 1 (.r𝑅)𝑥))
1514eqeq1d 2516 . . . . . 6 ((𝜑𝑥𝐵) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
1613oveqd 6443 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = (𝑥(.r𝑅) 1 ))
1716eqeq1d 2516 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑥 · 1 ) = 𝑥 ↔ (𝑥(.r𝑅) 1 ) = 𝑥))
1815, 17anbi12d 742 . . . . 5 ((𝜑𝑥𝐵) → ((( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ (( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
196, 18raleqbidva 3035 . . . 4 (𝜑 → (∀𝑥𝐵 (( 1 · 𝑥) = 𝑥 ∧ (𝑥 · 1 ) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
2011, 19mpbid 220 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))
216eleq2d 2577 . . . . . . . 8 (𝜑 → (𝑒𝐵𝑒 ∈ (Base‘𝑅)))
2213oveqd 6443 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑒 · 𝑥) = (𝑒(.r𝑅)𝑥))
2322eqeq1d 2516 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒(.r𝑅)𝑥) = 𝑥))
2413oveqd 6443 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → (𝑥 · 𝑒) = (𝑥(.r𝑅)𝑒))
2524eqeq1d 2516 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ((𝑥 · 𝑒) = 𝑥 ↔ (𝑥(.r𝑅)𝑒) = 𝑥))
2623, 25anbi12d 742 . . . . . . . . 9 ((𝜑𝑥𝐵) → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
276, 26raleqbidva 3035 . . . . . . . 8 (𝜑 → (∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
2821, 27anbi12d 742 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))))
298ralrimiva 2853 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
3029adantr 479 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → ∀𝑥𝐵 ( 1 · 𝑥) = 𝑥)
31 simpr 475 . . . . . . . . . . . 12 ((𝜑𝑒𝐵) → 𝑒𝐵)
32 simpr 475 . . . . . . . . . . . . . 14 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → 𝑥 = 𝑒)
3332oveq2d 6442 . . . . . . . . . . . . 13 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → ( 1 · 𝑥) = ( 1 · 𝑒))
3433, 32eqeq12d 2529 . . . . . . . . . . . 12 (((𝜑𝑒𝐵) ∧ 𝑥 = 𝑒) → (( 1 · 𝑥) = 𝑥 ↔ ( 1 · 𝑒) = 𝑒))
3531, 34rspcdv 3189 . . . . . . . . . . 11 ((𝜑𝑒𝐵) → (∀𝑥𝐵 ( 1 · 𝑥) = 𝑥 → ( 1 · 𝑒) = 𝑒))
3630, 35mpd 15 . . . . . . . . . 10 ((𝜑𝑒𝐵) → ( 1 · 𝑒) = 𝑒)
3736adantrr 748 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 𝑒)
385adantr 479 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 1𝐵)
39 simprr 791 . . . . . . . . . 10 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))
40 oveq2 6434 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑒 · 𝑥) = (𝑒 · 1 ))
41 id 22 . . . . . . . . . . . . . 14 (𝑥 = 1𝑥 = 1 )
4240, 41eqeq12d 2529 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑒 · 𝑥) = 𝑥 ↔ (𝑒 · 1 ) = 1 ))
43 oveq1 6433 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑥 · 𝑒) = ( 1 · 𝑒))
4443, 41eqeq12d 2529 . . . . . . . . . . . . 13 (𝑥 = 1 → ((𝑥 · 𝑒) = 𝑥 ↔ ( 1 · 𝑒) = 1 ))
4542, 44anbi12d 742 . . . . . . . . . . . 12 (𝑥 = 1 → (((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥) ↔ ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 )))
4645rspcva 3184 . . . . . . . . . . 11 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ((𝑒 · 1 ) = 1 ∧ ( 1 · 𝑒) = 1 ))
4746simprd 477 . . . . . . . . . 10 (( 1𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → ( 1 · 𝑒) = 1 )
4838, 39, 47syl2anc 690 . . . . . . . . 9 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → ( 1 · 𝑒) = 1 )
4937, 48eqtr3d 2550 . . . . . . . 8 ((𝜑 ∧ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥))) → 𝑒 = 1 )
5049ex 448 . . . . . . 7 (𝜑 → ((𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑒) = 𝑥)) → 𝑒 = 1 ))
5128, 50sylbird 248 . . . . . 6 (𝜑 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
5251alrimiv 1808 . . . . 5 (𝜑 → ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 ))
53 eleq1 2580 . . . . . . 7 (𝑒 = 1 → (𝑒 ∈ (Base‘𝑅) ↔ 1 ∈ (Base‘𝑅)))
54 oveq1 6433 . . . . . . . . . 10 (𝑒 = 1 → (𝑒(.r𝑅)𝑥) = ( 1 (.r𝑅)𝑥))
5554eqeq1d 2516 . . . . . . . . 9 (𝑒 = 1 → ((𝑒(.r𝑅)𝑥) = 𝑥 ↔ ( 1 (.r𝑅)𝑥) = 𝑥))
56 oveq2 6434 . . . . . . . . . 10 (𝑒 = 1 → (𝑥(.r𝑅)𝑒) = (𝑥(.r𝑅) 1 ))
5756eqeq1d 2516 . . . . . . . . 9 (𝑒 = 1 → ((𝑥(.r𝑅)𝑒) = 𝑥 ↔ (𝑥(.r𝑅) 1 ) = 𝑥))
5855, 57anbi12d 742 . . . . . . . 8 (𝑒 = 1 → (((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥) ↔ (( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
5958ralbidv 2873 . . . . . . 7 (𝑒 = 1 → (∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)))
6053, 59anbi12d 742 . . . . . 6 (𝑒 = 1 → ((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) ↔ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥))))
6160eqeu 3248 . . . . 5 (( 1 ∈ (Base‘𝑅) ∧ ( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ∧ ∀𝑒((𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)) → 𝑒 = 1 )) → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
627, 7, 20, 52, 61syl121anc 1322 . . . 4 (𝜑 → ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥)))
6360iota2 5679 . . . 4 (( 1𝐵 ∧ ∃!𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
645, 62, 63syl2anc 690 . . 3 (𝜑 → (( 1 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)(( 1 (.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅) 1 ) = 𝑥)) ↔ (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 ))
657, 20, 64mpbi2and 957 . 2 (𝜑 → (℩𝑒(𝑒 ∈ (Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝑒(.r𝑅)𝑥) = 𝑥 ∧ (𝑥(.r𝑅)𝑒) = 𝑥))) = 1 )
664, 65syl5req 2561 1 (𝜑1 = (1r𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wal 1472   = wceq 1474  wcel 1938  ∃!weu 2362  wral 2800  cio 5651  cfv 5689  (class class class)co 6426  Basecbs 15579  .rcmulr 15653  1rcur 18231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-mulcom 9755  ax-addass 9756  ax-mulass 9757  ax-distr 9758  ax-i2m1 9759  ax-1ne0 9760  ax-1rid 9761  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766  ax-pre-ltadd 9767  ax-pre-mulgt0 9768
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720  df-pnf 9831  df-mnf 9832  df-xr 9833  df-ltxr 9834  df-le 9835  df-sub 10019  df-neg 10020  df-nn 10776  df-2 10834  df-ndx 15582  df-slot 15583  df-base 15584  df-sets 15585  df-plusg 15665  df-0g 15809  df-mgp 18220  df-ur 18232
This theorem is referenced by:  ress1r  28916
  Copyright terms: Public domain W3C validator