Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmpt0 Structured version   Visualization version   GIF version

Theorem rnmpt0 41476
Description: The range of a function in maps-to notation is empty if and only if its domain is empty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rnmpt0.1 𝑥𝜑
rnmpt0.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmpt0.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
rnmpt0 (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmpt0
StepHypRef Expression
1 rnmpt0.1 . . . . . 6 𝑥𝜑
2 rnmpt0.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
31, 2ralrimia 41391 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
4 dmmptg 6090 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
53, 4syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
65eqcomd 2827 . . 3 (𝜑𝐴 = dom (𝑥𝐴𝐵))
76eqeq1d 2823 . 2 (𝜑 → (𝐴 = ∅ ↔ dom (𝑥𝐴𝐵) = ∅))
8 dm0rn0 5789 . . 3 (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅)
98a1i 11 . 2 (𝜑 → (dom (𝑥𝐴𝐵) = ∅ ↔ ran (𝑥𝐴𝐵) = ∅))
10 rnmpt0.3 . . . . . 6 𝐹 = (𝑥𝐴𝐵)
1110rneqi 5801 . . . . 5 ran 𝐹 = ran (𝑥𝐴𝐵)
1211a1i 11 . . . 4 (𝜑 → ran 𝐹 = ran (𝑥𝐴𝐵))
1312eqcomd 2827 . . 3 (𝜑 → ran (𝑥𝐴𝐵) = ran 𝐹)
1413eqeq1d 2823 . 2 (𝜑 → (ran (𝑥𝐴𝐵) = ∅ ↔ ran 𝐹 = ∅))
157, 9, 143bitrrd 308 1 (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wnf 1780  wcel 2110  wral 3138  c0 4290  cmpt 5138  dom cdm 5549  ran crn 5550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-mpt 5139  df-xp 5555  df-rel 5556  df-cnv 5557  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562
This theorem is referenced by:  rnmptn0  41477
  Copyright terms: Public domain W3C validator