Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptfi Structured version   Visualization version   GIF version

Theorem rnmptfi 38822
Description: The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
rnmptfi.a 𝐴 = (𝑥𝐵𝐶)
Assertion
Ref Expression
rnmptfi (𝐵 ∈ Fin → ran 𝐴 ∈ Fin)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem rnmptfi
StepHypRef Expression
1 rnmptfi.a . . 3 𝐴 = (𝑥𝐵𝐶)
2 mptfi 8209 . . 3 (𝐵 ∈ Fin → (𝑥𝐵𝐶) ∈ Fin)
31, 2syl5eqel 2702 . 2 (𝐵 ∈ Fin → 𝐴 ∈ Fin)
4 rnfi 8193 . 2 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
53, 4syl 17 1 (𝐵 ∈ Fin → ran 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  cmpt 4673  ran crn 5075  Fincfn 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-fin 7903
This theorem is referenced by:  fisupclrnmpt  39083  stoweidlem35  39556  fourierdlem50  39677  fourierdlem70  39697  fourierdlem71  39698  fourierdlem76  39703  fourierdlem80  39707  fourierdlem103  39730  fourierdlem104  39731  ioorrnopnlem  39828  hoidmvlelem2  40114  iunhoiioolem  40193  vonioolem1  40198
  Copyright terms: Public domain W3C validator