Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssbi Structured version   Visualization version   GIF version

Theorem rnmptssbi 41541
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
rnmptssbi.1 𝑥𝜑
rnmptssbi.2 𝐹 = (𝑥𝐴𝐵)
rnmptssbi.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
rnmptssbi (𝜑 → (ran 𝐹𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmptssbi
StepHypRef Expression
1 rnmptssbi.1 . . . 4 𝑥𝜑
2 rnmptssbi.2 . . . . . . 7 𝐹 = (𝑥𝐴𝐵)
3 nfmpt1 5166 . . . . . . 7 𝑥(𝑥𝐴𝐵)
42, 3nfcxfr 2977 . . . . . 6 𝑥𝐹
54nfrn 5826 . . . . 5 𝑥ran 𝐹
6 nfcv 2979 . . . . 5 𝑥𝐶
75, 6nfss 3962 . . . 4 𝑥ran 𝐹𝐶
81, 7nfan 1900 . . 3 𝑥(𝜑 ∧ ran 𝐹𝐶)
9 simplr 767 . . . 4 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → ran 𝐹𝐶)
10 simpr 487 . . . . 5 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝑥𝐴)
11 rnmptssbi.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
1211adantlr 713 . . . . 5 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵𝑉)
132, 10, 12elrnmpt1d 41507 . . . 4 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵 ∈ ran 𝐹)
149, 13sseldd 3970 . . 3 (((𝜑 ∧ ran 𝐹𝐶) ∧ 𝑥𝐴) → 𝐵𝐶)
158, 14ralrimia 41405 . 2 ((𝜑 ∧ ran 𝐹𝐶) → ∀𝑥𝐴 𝐵𝐶)
162rnmptss 6888 . . 3 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
1716adantl 484 . 2 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝐶) → ran 𝐹𝐶)
1815, 17impbida 799 1 (𝜑 → (ran 𝐹𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  wral 3140  wss 3938  cmpt 5148  ran crn 5558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365
This theorem is referenced by:  imassmpt  41544
  Copyright terms: Public domain W3C validator