 Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rntrcl Structured version   Visualization version   GIF version

Theorem rntrcl 38437
 Description: The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020.)
Assertion
Ref Expression
rntrcl (𝑋𝑉 → ran {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = ran 𝑋)
Distinct variable group:   𝑥,𝑋
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem rntrcl
StepHypRef Expression
1 trclubg 13939 . . . 4 (𝑋𝑉 {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)))
2 rnss 5509 . . . 4 ( {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ (𝑋 ∪ (dom 𝑋 × ran 𝑋)) → ran {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋)))
31, 2syl 17 . . 3 (𝑋𝑉 → ran {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ ran (𝑋 ∪ (dom 𝑋 × ran 𝑋)))
4 rnun 5699 . . . 4 ran (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = (ran 𝑋 ∪ ran (dom 𝑋 × ran 𝑋))
5 rnxpss 5724 . . . . 5 ran (dom 𝑋 × ran 𝑋) ⊆ ran 𝑋
6 ssequn2 3929 . . . . 5 (ran (dom 𝑋 × ran 𝑋) ⊆ ran 𝑋 ↔ (ran 𝑋 ∪ ran (dom 𝑋 × ran 𝑋)) = ran 𝑋)
75, 6mpbi 220 . . . 4 (ran 𝑋 ∪ ran (dom 𝑋 × ran 𝑋)) = ran 𝑋
84, 7eqtri 2782 . . 3 ran (𝑋 ∪ (dom 𝑋 × ran 𝑋)) = ran 𝑋
93, 8syl6sseq 3792 . 2 (𝑋𝑉 → ran {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ⊆ ran 𝑋)
10 ssmin 4648 . . 3 𝑋 {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}
11 rnss 5509 . . 3 (𝑋 {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} → ran 𝑋 ⊆ ran {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
1210, 11mp1i 13 . 2 (𝑋𝑉 → ran 𝑋 ⊆ ran {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
139, 12eqssd 3761 1 (𝑋𝑉 → ran {𝑥 ∣ (𝑋𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = ran 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  {cab 2746   ∪ cun 3713   ⊆ wss 3715  ∩ cint 4627   × cxp 5264  dom cdm 5266  ran crn 5267   ∘ ccom 5270 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278 This theorem is referenced by:  dfrtrcl5  38438
 Copyright terms: Public domain W3C validator