![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnxpss | Structured version Visualization version GIF version |
Description: The range of a Cartesian product is a subclass of the second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
rnxpss | ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5277 | . 2 ⊢ ran (𝐴 × 𝐵) = dom ◡(𝐴 × 𝐵) | |
2 | cnvxp 5709 | . . . 4 ⊢ ◡(𝐴 × 𝐵) = (𝐵 × 𝐴) | |
3 | 2 | dmeqi 5480 | . . 3 ⊢ dom ◡(𝐴 × 𝐵) = dom (𝐵 × 𝐴) |
4 | dmxpss 5723 | . . 3 ⊢ dom (𝐵 × 𝐴) ⊆ 𝐵 | |
5 | 3, 4 | eqsstri 3776 | . 2 ⊢ dom ◡(𝐴 × 𝐵) ⊆ 𝐵 |
6 | 1, 5 | eqsstri 3776 | 1 ⊢ ran (𝐴 × 𝐵) ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3715 × cxp 5264 ◡ccnv 5265 dom cdm 5266 ran crn 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 |
This theorem is referenced by: ssxpb 5726 ssrnres 5730 funssxp 6222 fconst 6252 dff2 6534 dff3 6535 fliftf 6728 marypha1lem 8504 marypha1 8505 dfac12lem2 9158 brdom4 9544 nqerf 9944 xptrrel 13920 lern 17426 cnconst2 21289 lmss 21304 tsmsxplem1 22157 causs 23296 i1f0 23653 itg10 23654 taylf 24314 perpln2 25805 locfinref 30217 sitg0 30717 noextendseq 32126 heicant 33757 rntrclfvOAI 37756 rtrclex 38426 trclexi 38429 rtrclexi 38430 cnvtrcl0 38435 rntrcl 38437 brtrclfv2 38521 rp-imass 38567 xphe 38577 rfovcnvf1od 38800 |
Copyright terms: Public domain | W3C validator |