Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnxrnidres Structured version   Visualization version   GIF version

Theorem rnxrnidres 35651
Description: Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.)
Assertion
Ref Expression
rnxrnidres ran (𝑅 ⋉ ( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥)}
Distinct variable groups:   𝑢,𝐴,𝑥,𝑦   𝑢,𝑅,𝑥,𝑦

Proof of Theorem rnxrnidres
StepHypRef Expression
1 rnxrnres 35649 . 2 ran (𝑅 ⋉ ( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢 I 𝑦)}
2 ideqg 5724 . . . . . 6 (𝑦 ∈ V → (𝑢 I 𝑦𝑢 = 𝑦))
32elv 3501 . . . . 5 (𝑢 I 𝑦𝑢 = 𝑦)
43anbi1ci 627 . . . 4 ((𝑢𝑅𝑥𝑢 I 𝑦) ↔ (𝑢 = 𝑦𝑢𝑅𝑥))
54rexbii 3249 . . 3 (∃𝑢𝐴 (𝑢𝑅𝑥𝑢 I 𝑦) ↔ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥))
65opabbii 5135 . 2 {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢𝑅𝑥𝑢 I 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥)}
71, 6eqtri 2846 1 ran (𝑅 ⋉ ( I ↾ 𝐴)) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑢 = 𝑦𝑢𝑅𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wrex 3141  Vcvv 3496   class class class wbr 5068  {copab 5130   I cid 5461  ran crn 5558  cres 5559  cxrn 35454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365  df-1st 7691  df-2nd 7692  df-ec 8293  df-xrn 35625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator