Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rollelem Structured version   Visualization version   GIF version

Theorem rollelem 23656
 Description: Lemma for rolle 23657. (Contributed by Mario Carneiro, 1-Sep-2014.)
Hypotheses
Ref Expression
rolle.a (𝜑𝐴 ∈ ℝ)
rolle.b (𝜑𝐵 ∈ ℝ)
rolle.lt (𝜑𝐴 < 𝐵)
rolle.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
rolle.d (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
rolle.r (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
rolle.u (𝜑𝑈 ∈ (𝐴[,]𝐵))
rolle.n (𝜑 → ¬ 𝑈 ∈ {𝐴, 𝐵})
Assertion
Ref Expression
rollelem (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑈,𝑦

Proof of Theorem rollelem
StepHypRef Expression
1 rolle.n . . 3 (𝜑 → ¬ 𝑈 ∈ {𝐴, 𝐵})
2 rolle.u . . . . . 6 (𝜑𝑈 ∈ (𝐴[,]𝐵))
3 rolle.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
43rexrd 10033 . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
5 rolle.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
65rexrd 10033 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
7 rolle.lt . . . . . . . 8 (𝜑𝐴 < 𝐵)
83, 5, 7ltled 10129 . . . . . . 7 (𝜑𝐴𝐵)
9 prunioo 12243 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
104, 6, 8, 9syl3anc 1323 . . . . . 6 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
112, 10eleqtrrd 2701 . . . . 5 (𝜑𝑈 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}))
12 elun 3731 . . . . 5 (𝑈 ∈ ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) ↔ (𝑈 ∈ (𝐴(,)𝐵) ∨ 𝑈 ∈ {𝐴, 𝐵}))
1311, 12sylib 208 . . . 4 (𝜑 → (𝑈 ∈ (𝐴(,)𝐵) ∨ 𝑈 ∈ {𝐴, 𝐵}))
1413ord 392 . . 3 (𝜑 → (¬ 𝑈 ∈ (𝐴(,)𝐵) → 𝑈 ∈ {𝐴, 𝐵}))
151, 14mt3d 140 . 2 (𝜑𝑈 ∈ (𝐴(,)𝐵))
16 rolle.f . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
17 cncff 22604 . . . 4 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
1816, 17syl 17 . . 3 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
19 iccssre 12197 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
203, 5, 19syl2anc 692 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
21 ioossicc 12201 . . . 4 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
2221a1i 11 . . 3 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
23 rolle.d . . . 4 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
2415, 23eleqtrrd 2701 . . 3 (𝜑𝑈 ∈ dom (ℝ D 𝐹))
25 rolle.r . . . 4 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
26 ssralv 3645 . . . 4 ((𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) → (∀𝑦 ∈ (𝐴[,]𝐵)(𝐹𝑦) ≤ (𝐹𝑈) → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈)))
2722, 25, 26sylc 65 . . 3 (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(𝐹𝑦) ≤ (𝐹𝑈))
2818, 20, 15, 22, 24, 27dvferm 23655 . 2 (𝜑 → ((ℝ D 𝐹)‘𝑈) = 0)
29 fveq2 6148 . . . 4 (𝑥 = 𝑈 → ((ℝ D 𝐹)‘𝑥) = ((ℝ D 𝐹)‘𝑈))
3029eqeq1d 2623 . . 3 (𝑥 = 𝑈 → (((ℝ D 𝐹)‘𝑥) = 0 ↔ ((ℝ D 𝐹)‘𝑈) = 0))
3130rspcev 3295 . 2 ((𝑈 ∈ (𝐴(,)𝐵) ∧ ((ℝ D 𝐹)‘𝑈) = 0) → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
3215, 28, 31syl2anc 692 1 (𝜑 → ∃𝑥 ∈ (𝐴(,)𝐵)((ℝ D 𝐹)‘𝑥) = 0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 383   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   ∪ cun 3553   ⊆ wss 3555  {cpr 4150   class class class wbr 4613  dom cdm 5074  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℝcr 9879  0cc0 9880  ℝ*cxr 10017   < clt 10018   ≤ cle 10019  (,)cioo 12117  [,]cicc 12120  –cn→ccncf 22587   D cdv 23533 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-lp 20850  df-perf 20851  df-cn 20941  df-cnp 20942  df-haus 21029  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-xms 22035  df-ms 22036  df-cncf 22589  df-limc 23536  df-dv 23537 This theorem is referenced by:  rolle  23657
 Copyright terms: Public domain W3C validator