MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsum Structured version   Visualization version   GIF version

Theorem rplogsum 24929
Description: The sum of log𝑝 / 𝑝 over the primes 𝑝𝐴 (mod 𝑁) is asymptotic to log𝑥 / ϕ(𝑥) + 𝑂(1). Equation 9.4.3 of [Shapiro], p. 375. (Contributed by Mario Carneiro, 16-Apr-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.u 𝑈 = (Unit‘𝑍)
rpvmasum.b (𝜑𝐴𝑈)
rpvmasum.t 𝑇 = (𝐿 “ {𝐴})
Assertion
Ref Expression
rplogsum (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑝,𝐴   𝑁,𝑝,𝑥   𝜑,𝑝,𝑥   𝑇,𝑝,𝑥   𝑈,𝑝,𝑥   𝑍,𝑝,𝑥   𝐿,𝑝,𝑥

Proof of Theorem rplogsum
StepHypRef Expression
1 rpvmasum.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
2 rpvmasum.l . . 3 𝐿 = (ℤRHom‘𝑍)
3 rpvmasum.a . . 3 (𝜑𝑁 ∈ ℕ)
4 rpvmasum.u . . 3 𝑈 = (Unit‘𝑍)
5 rpvmasum.b . . 3 (𝜑𝐴𝑈)
6 rpvmasum.t . . 3 𝑇 = (𝐿 “ {𝐴})
71, 2, 3, 4, 5, 6rpvmasum 24928 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
83phicld 15257 . . . . . . 7 (𝜑 → (ϕ‘𝑁) ∈ ℕ)
98adantr 479 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℕ)
109nncnd 10879 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (ϕ‘𝑁) ∈ ℂ)
11 fzfid 12585 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
12 inss1 3790 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))
13 ssfi 8038 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
1411, 12, 13sylancl 692 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ∈ Fin)
15 simpr 475 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
1612, 15sseldi 3561 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ (1...(⌊‘𝑥)))
17 elfznn 12192 . . . . . . . . 9 (𝑝 ∈ (1...(⌊‘𝑥)) → 𝑝 ∈ ℕ)
1816, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 𝑝 ∈ ℕ)
19 vmacl 24557 . . . . . . . . 9 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℝ)
20 nndivre 10899 . . . . . . . . 9 (((Λ‘𝑝) ∈ ℝ ∧ 𝑝 ∈ ℕ) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2119, 20mpancom 699 . . . . . . . 8 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2218, 21syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℝ)
2314, 22fsumrecl 14254 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℝ)
2423recnd 9920 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) ∈ ℂ)
2510, 24mulcld 9912 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) ∈ ℂ)
26 relogcl 24039 . . . . . 6 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2726adantl 480 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2827recnd 9920 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
2925, 28subcld 10239 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
30 inss1 3790 . . . . . . . 8 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))
31 ssfi 8038 . . . . . . . 8 (((1...(⌊‘𝑥)) ∈ Fin ∧ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (1...(⌊‘𝑥))) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
3211, 30, 31sylancl 692 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ∈ Fin)
33 simpr 475 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))
3430, 33sseldi 3561 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ (1...(⌊‘𝑥)))
3534, 17syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℕ)
36 nnrp 11670 . . . . . . . . . 10 (𝑝 ∈ ℕ → 𝑝 ∈ ℝ+)
3736relogcld 24086 . . . . . . . . 9 (𝑝 ∈ ℕ → (log‘𝑝) ∈ ℝ)
3837, 36rerpdivcld 11731 . . . . . . . 8 (𝑝 ∈ ℕ → ((log‘𝑝) / 𝑝) ∈ ℝ)
3935, 38syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ((log‘𝑝) / 𝑝) ∈ ℝ)
4032, 39fsumrecl 14254 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℝ)
4140recnd 9920 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝) ∈ ℂ)
4210, 41mulcld 9912 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) ∈ ℂ)
4342, 28subcld 10239 . . 3 ((𝜑𝑥 ∈ ℝ+) → (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)) ∈ ℂ)
4410, 24, 41subdid 10332 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
4519recnd 9920 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (Λ‘𝑝) ∈ ℂ)
46 0re 9892 . . . . . . . . . . . . 13 0 ∈ ℝ
47 ifcl 4075 . . . . . . . . . . . . 13 (((log‘𝑝) ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4837, 46, 47sylancl 692 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℝ)
4948recnd 9920 . . . . . . . . . . 11 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ)
5036rpcnne0d 11709 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0))
51 divsubdir 10566 . . . . . . . . . . 11 (((Λ‘𝑝) ∈ ℂ ∧ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ∈ ℂ ∧ (𝑝 ∈ ℂ ∧ 𝑝 ≠ 0)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5245, 49, 50, 51syl3anc 1317 . . . . . . . . . 10 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5318, 52syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5453sumeq2dv 14223 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
5521recnd 9920 . . . . . . . . . 10 (𝑝 ∈ ℕ → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5618, 55syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → ((Λ‘𝑝) / 𝑝) ∈ ℂ)
5748, 36rerpdivcld 11731 . . . . . . . . . . 11 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℝ)
5857recnd 9920 . . . . . . . . . 10 (𝑝 ∈ ℕ → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
5918, 58syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
6014, 56, 59fsumsub 14304 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) / 𝑝) − (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)))
61 inss2 3791 . . . . . . . . . . . 12 (ℙ ∩ 𝑇) ⊆ 𝑇
62 sslin 3796 . . . . . . . . . . . 12 ((ℙ ∩ 𝑇) ⊆ 𝑇 → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6361, 62mp1i 13 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ((1...(⌊‘𝑥)) ∩ 𝑇))
6435, 58syl 17 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) ∈ ℂ)
65 eldif 3545 . . . . . . . . . . . . . . . 16 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
66 incom 3762 . . . . . . . . . . . . . . . . . . . . 21 (ℙ ∩ 𝑇) = (𝑇 ∩ ℙ)
6766ineq2i 3768 . . . . . . . . . . . . . . . . . . . 20 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
68 inass 3780 . . . . . . . . . . . . . . . . . . . 20 (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ) = ((1...(⌊‘𝑥)) ∩ (𝑇 ∩ ℙ))
6967, 68eqtr4i 2630 . . . . . . . . . . . . . . . . . . 19 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) = (((1...(⌊‘𝑥)) ∩ 𝑇) ∩ ℙ)
7069elin2 3758 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ↔ (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ 𝑝 ∈ ℙ))
7170simplbi2 652 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) → (𝑝 ∈ ℙ → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))))
7271con3dimp 455 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇) ∧ ¬ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7365, 72sylbi 205 . . . . . . . . . . . . . . 15 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → ¬ 𝑝 ∈ ℙ)
7473adantl 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → ¬ 𝑝 ∈ ℙ)
7574iffalsed 4042 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = 0)
7675oveq1d 6538 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = (0 / 𝑝))
77 eldifi 3689 . . . . . . . . . . . . . 14 (𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇))
7877, 18sylan2 489 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → 𝑝 ∈ ℕ)
79 div0 10560 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℂ ∧ 𝑝 ≠ 0) → (0 / 𝑝) = 0)
8050, 79syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 / 𝑝) = 0)
8178, 80syl 17 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (0 / 𝑝) = 0)
8276, 81eqtrd 2639 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (((1...(⌊‘𝑥)) ∩ 𝑇) ∖ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = 0)
8363, 64, 82, 14fsumss 14245 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝))
84 inss2 3791 . . . . . . . . . . . . . . 15 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ (ℙ ∩ 𝑇)
85 inss1 3790 . . . . . . . . . . . . . . 15 (ℙ ∩ 𝑇) ⊆ ℙ
8684, 85sstri 3572 . . . . . . . . . . . . . 14 ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇)) ⊆ ℙ
8786, 33sseldi 3561 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → 𝑝 ∈ ℙ)
8887iftrued 4039 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → if(𝑝 ∈ ℙ, (log‘𝑝), 0) = (log‘𝑝))
8988oveq1d 6538 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))) → (if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = ((log‘𝑝) / 𝑝))
9089sumeq2dv 14223 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9183, 90eqtr3d 2641 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))
9291oveq2d 6539 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(if(𝑝 ∈ ℙ, (log‘𝑝), 0) / 𝑝)) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9354, 60, 923eqtrd 2643 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) = (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)))
9493oveq2d 6539 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((ϕ‘𝑁) · (Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝) − Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9525, 42, 28nnncan2d 10274 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) = (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝))))
9644, 94, 953eqtr4d 2649 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))))
9796mpteq2dva 4662 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) = (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))))
9819, 48resubcld 10305 . . . . . . . . 9 (𝑝 ∈ ℕ → ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ∈ ℝ)
9998, 36rerpdivcld 11731 . . . . . . . 8 (𝑝 ∈ ℕ → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10018, 99syl 17 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
10114, 100fsumrecl 14254 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
102101recnd 9920 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℂ)
103 rpssre 11671 . . . . . 6 + ⊆ ℝ
1048nncnd 10879 . . . . . 6 (𝜑 → (ϕ‘𝑁) ∈ ℂ)
105 o1const 14140 . . . . . 6 ((ℝ+ ⊆ ℝ ∧ (ϕ‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
106103, 104, 105sylancr 693 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (ϕ‘𝑁)) ∈ 𝑂(1))
107103a1i 11 . . . . . 6 (𝜑 → ℝ+ ⊆ ℝ)
108 1red 9907 . . . . . 6 (𝜑 → 1 ∈ ℝ)
109 2re 10933 . . . . . . 7 2 ∈ ℝ
110109a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
111 breq1 4576 . . . . . . . . . . . . . 14 ((log‘𝑝) = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → ((log‘𝑝) ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
112 breq1 4576 . . . . . . . . . . . . . 14 (0 = if(𝑝 ∈ ℙ, (log‘𝑝), 0) → (0 ≤ (Λ‘𝑝) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
11337adantr 479 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ∈ ℝ)
114 vmaprm 24556 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ ℙ → (Λ‘𝑝) = (log‘𝑝))
115114adantl 480 . . . . . . . . . . . . . . . 16 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (Λ‘𝑝) = (log‘𝑝))
116115eqcomd 2611 . . . . . . . . . . . . . . 15 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) = (Λ‘𝑝))
117 eqle 9986 . . . . . . . . . . . . . . 15 (((log‘𝑝) ∈ ℝ ∧ (log‘𝑝) = (Λ‘𝑝)) → (log‘𝑝) ≤ (Λ‘𝑝))
118113, 116, 117syl2anc 690 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (log‘𝑝) ≤ (Λ‘𝑝))
119 vmage0 24560 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℕ → 0 ≤ (Λ‘𝑝))
120119adantr 479 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℕ ∧ ¬ 𝑝 ∈ ℙ) → 0 ≤ (Λ‘𝑝))
121111, 112, 118, 120ifbothda 4068 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝))
12219, 48subge0d 10462 . . . . . . . . . . . . 13 (𝑝 ∈ ℕ → (0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) ↔ if(𝑝 ∈ ℙ, (log‘𝑝), 0) ≤ (Λ‘𝑝)))
123121, 122mpbird 245 . . . . . . . . . . . 12 (𝑝 ∈ ℕ → 0 ≤ ((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)))
12498, 36, 123divge0d 11740 . . . . . . . . . . 11 (𝑝 ∈ ℕ → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12518, 124syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12614, 100, 125fsumge0 14310 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
127101, 126absidd 13951 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) = Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
12817adantl 480 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 𝑝 ∈ ℕ)
129128, 99syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
13011, 129fsumrecl 14254 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ∈ ℝ)
131109a1i 11 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℝ)
132128, 124syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑝 ∈ (1...(⌊‘𝑥))) → 0 ≤ (((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
13312a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → ((1...(⌊‘𝑥)) ∩ 𝑇) ⊆ (1...(⌊‘𝑥)))
13411, 129, 132, 133fsumless 14311 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))
135107sselda 3563 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
136135flcld 12412 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℤ)
137 rplogsumlem2 24887 . . . . . . . . . 10 ((⌊‘𝑥) ∈ ℤ → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
138136, 137syl 17 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ (1...(⌊‘𝑥))(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
139101, 130, 131, 134, 138letrd 10041 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝) ≤ 2)
140127, 139eqbrtrd 4595 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
141140adantrr 748 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ≤ 2)
142107, 102, 108, 110, 141elo1d 14057 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝)) ∈ 𝑂(1))
14310, 102, 106, 142o1mul2 14145 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)(((Λ‘𝑝) − if(𝑝 ∈ ℙ, (log‘𝑝), 0)) / 𝑝))) ∈ 𝑂(1))
14497, 143eqeltrrd 2684 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥)) − (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥)))) ∈ 𝑂(1))
14529, 43, 144o1dif 14150 . 2 (𝜑 → ((𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ 𝑇)((Λ‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1) ↔ (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1)))
1467, 145mpbid 220 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (((ϕ‘𝑁) · Σ𝑝 ∈ ((1...(⌊‘𝑥)) ∩ (ℙ ∩ 𝑇))((log‘𝑝) / 𝑝)) − (log‘𝑥))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1975  wne 2775  cdif 3532  cin 3534  wss 3535  ifcif 4031  {csn 4120   class class class wbr 4573  cmpt 4633  ccnv 5023  cima 5027  cfv 5786  (class class class)co 6523  Fincfn 7814  cc 9786  cr 9787  0cc0 9788  1c1 9789   · cmul 9793  cle 9927  cmin 10113   / cdiv 10529  cn 10863  2c2 10913  cz 11206  +crp 11660  ...cfz 12148  cfl 12404  abscabs 13764  𝑂(1)co1 14007  Σcsu 14206  cprime 15165  ϕcphi 15249  Unitcui 18404  ℤRHomczrh 19608  ℤ/nczn 19611  logclog 24018  Λcvma 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-iin 4448  df-disj 4544  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-of 6768  df-rpss 6808  df-om 6931  df-1st 7032  df-2nd 7033  df-supp 7156  df-tpos 7212  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-2o 7421  df-oadd 7424  df-omul 7425  df-er 7602  df-ec 7604  df-qs 7608  df-map 7719  df-pm 7720  df-ixp 7768  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-fsupp 8132  df-fi 8173  df-sup 8204  df-inf 8205  df-oi 8271  df-card 8621  df-acn 8624  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ioo 12002  df-ioc 12003  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-fl 12406  df-mod 12482  df-seq 12615  df-exp 12674  df-fac 12874  df-bc 12903  df-hash 12931  df-word 13096  df-concat 13098  df-s1 13099  df-shft 13597  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-limsup 13992  df-clim 14009  df-rlim 14010  df-o1 14011  df-lo1 14012  df-sum 14207  df-ef 14579  df-e 14580  df-sin 14581  df-cos 14582  df-tan 14583  df-pi 14584  df-dvds 14764  df-gcd 14997  df-prm 15166  df-numer 15223  df-denom 15224  df-phi 15251  df-pc 15322  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-ip 15728  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-hom 15735  df-cco 15736  df-rest 15848  df-topn 15849  df-0g 15867  df-gsum 15868  df-topgen 15869  df-pt 15870  df-prds 15873  df-xrs 15927  df-qtop 15932  df-imas 15933  df-qus 15934  df-xps 15935  df-mre 16011  df-mrc 16012  df-acs 16014  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-mhm 17100  df-submnd 17101  df-grp 17190  df-minusg 17191  df-sbg 17192  df-mulg 17306  df-subg 17356  df-nsg 17357  df-eqg 17358  df-ghm 17423  df-gim 17466  df-ga 17488  df-cntz 17515  df-oppg 17541  df-od 17713  df-gex 17714  df-pgp 17715  df-lsm 17816  df-pj1 17817  df-cmn 17960  df-abl 17961  df-cyg 18045  df-dprd 18159  df-dpj 18160  df-mgp 18255  df-ur 18267  df-ring 18314  df-cring 18315  df-oppr 18388  df-dvdsr 18406  df-unit 18407  df-invr 18437  df-dvr 18448  df-rnghom 18480  df-drng 18514  df-subrg 18543  df-lmod 18630  df-lss 18696  df-lsp 18735  df-sra 18935  df-rgmod 18936  df-lidl 18937  df-rsp 18938  df-2idl 18995  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-fbas 19506  df-fg 19507  df-cnfld 19510  df-zring 19580  df-zrh 19612  df-zn 19615  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-cld 20571  df-ntr 20572  df-cls 20573  df-nei 20650  df-lp 20688  df-perf 20689  df-cn 20779  df-cnp 20780  df-haus 20867  df-cmp 20938  df-tx 21113  df-hmeo 21306  df-fil 21398  df-fm 21490  df-flim 21491  df-flf 21492  df-xms 21872  df-ms 21873  df-tms 21874  df-cncf 22416  df-0p 23156  df-limc 23349  df-dv 23350  df-ply 23661  df-idp 23662  df-coe 23663  df-dgr 23664  df-quot 23763  df-log 24020  df-cxp 24021  df-em 24432  df-cht 24536  df-vma 24537  df-chp 24538  df-ppi 24539  df-mu 24540  df-dchr 24671
This theorem is referenced by:  dirith2  24930
  Copyright terms: Public domain W3C validator