MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem1 Structured version   Visualization version   GIF version

Theorem rplogsumlem1 26052
Description: Lemma for rplogsum 26095. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rplogsumlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13333 . . 3 (𝐴 ∈ ℕ → (2...𝐴) ∈ Fin)
2 elfzuz 12896 . . . . . . . 8 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ (ℤ‘2))
3 eluz2nn 12276 . . . . . . . 8 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
42, 3syl 17 . . . . . . 7 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ ℕ)
54adantl 484 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℕ)
65nnrpd 12421 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ+)
76relogcld 25198 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ∈ ℝ)
82adantl 484 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ (ℤ‘2))
9 uz2m1nn 12315 . . . . . 6 (𝑛 ∈ (ℤ‘2) → (𝑛 − 1) ∈ ℕ)
108, 9syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℕ)
115, 10nnmulcld 11682 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℕ)
127, 11nndivred 11683 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
131, 12fsumrecl 15083 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
14 2re 11703 . . . . 5 2 ∈ ℝ
1510nnrpd 12421 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ+)
1615rpsqrtcld 14763 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ+)
17 rerpdivcl 12411 . . . . 5 ((2 ∈ ℝ ∧ (√‘(𝑛 − 1)) ∈ ℝ+) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
1814, 16, 17sylancr 589 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
196rpsqrtcld 14763 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ+)
20 rerpdivcl 12411 . . . . 5 ((2 ∈ ℝ ∧ (√‘𝑛) ∈ ℝ+) → (2 / (√‘𝑛)) ∈ ℝ)
2114, 19, 20sylancr 589 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘𝑛)) ∈ ℝ)
2218, 21resubcld 11060 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
231, 22fsumrecl 15083 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
2414a1i 11 . 2 (𝐴 ∈ ℕ → 2 ∈ ℝ)
2516rpred 12423 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ)
265nnred 11645 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ)
27 peano2rem 10945 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ)
2926, 28remulcld 10663 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℝ)
3029, 22remulcld 10663 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) ∈ ℝ)
315nncnd 11646 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℂ)
32 ax-1cn 10587 . . . . . . . 8 1 ∈ ℂ
33 npcan 10887 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
3431, 32, 33sylancl 588 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) + 1) = 𝑛)
3534fveq2d 6667 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
3615rpge0d 12427 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ (𝑛 − 1))
37 loglesqrt 25331 . . . . . . 7 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3828, 36, 37syl2anc 586 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3935, 38eqbrtrrd 5081 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ (√‘(𝑛 − 1)))
4019rpred 12423 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ)
4140, 25readdcld 10662 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ∈ ℝ)
42 remulcl 10614 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℝ ∧ 2 ∈ ℝ) → ((√‘𝑛) · 2) ∈ ℝ)
4340, 14, 42sylancl 588 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) ∈ ℝ)
4440, 25resubcld 11060 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ)
4526lem1d 11565 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ≤ 𝑛)
466rpge0d 12427 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ 𝑛)
4728, 36, 26, 46sqrtled 14778 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) ≤ 𝑛 ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
4845, 47mpbid 234 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (√‘𝑛))
4940, 25subge0d 11222 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))) ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
5048, 49mpbird 259 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))))
5125, 40, 40, 48leadd2dd 11247 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) + (√‘𝑛)))
5219rpcnd 12425 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℂ)
5352times2d 11873 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) = ((√‘𝑛) + (√‘𝑛)))
5451, 53breqtrrd 5085 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) · 2))
5541, 43, 44, 50, 54lemul1ad 11571 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) ≤ (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
5631sqsqrtd 14791 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛)↑2) = 𝑛)
57 subcl 10877 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
5831, 32, 57sylancl 588 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℂ)
5958sqsqrtd 14791 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1))↑2) = (𝑛 − 1))
6056, 59oveq12d 7166 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (𝑛 − (𝑛 − 1)))
6116rpcnd 12425 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℂ)
62 subsq 13564 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℂ ∧ (√‘(𝑛 − 1)) ∈ ℂ) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
6352, 61, 62syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
64 nncan 10907 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑛 − 1)) = 1)
6531, 32, 64sylancl 588 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − (𝑛 − 1)) = 1)
6660, 63, 653eqtr3d 2862 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = 1)
67 2cn 11704 . . . . . . . . . . 11 2 ∈ ℂ
6867a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 2 ∈ ℂ)
6944recnd 10661 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℂ)
7052, 68, 69mulassd 10656 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
7155, 66, 703brtr3d 5088 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
72 1red 10634 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ∈ ℝ)
73 remulcl 10614 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7414, 44, 73sylancr 589 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7540, 74remulcld 10663 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ∈ ℝ)
7672, 75, 16lemul1d 12466 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ↔ (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1)))))
7771, 76mpbid 234 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))))
7861mulid2d 10651 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) = (√‘(𝑛 − 1)))
7974recnd 10661 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℂ)
8052, 79, 61mul32d 10842 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
8177, 78, 803brtr3d 5088 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
82 remsqsqrt 14608 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
8326, 46, 82syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
84 remsqsqrt 14608 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8528, 36, 84syl2anc 586 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8683, 85oveq12d 7166 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (𝑛 · (𝑛 − 1)))
8752, 52, 61, 61mul4d 10844 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8886, 87eqtr3d 2856 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8916rpcnne0d 12432 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0))
9019rpcnne0d 12432 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))
91 divsubdiv 11348 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ∈ ℂ) ∧ (((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0) ∧ ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9268, 68, 89, 90, 91syl22anc 836 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9368, 52, 61subdid 11088 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))))
9452, 61mulcomd 10654 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) = ((√‘(𝑛 − 1)) · (√‘𝑛)))
9593, 94oveq12d 7166 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9692, 95eqtr4d 2857 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))
9788, 96oveq12d 7166 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))))
9852, 61mulcld 10653 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℂ)
9919, 16rpmulcld 12439 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℝ+)
10074, 99rerpdivcld 12454 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℝ)
101100recnd 10661 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℂ)
10298, 98, 101mulassd 10656 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))))
10399rpne0d 12428 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ≠ 0)
10479, 98, 103divcan2d 11410 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))))
105104oveq2d 7164 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10697, 102, 1053eqtrd 2858 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10781, 106breqtrrd 5085 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
1087, 25, 30, 39, 107letrd 10789 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
10911nngt0d 11678 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 < (𝑛 · (𝑛 − 1)))
110 ledivmul 11508 . . . . 5 (((log‘𝑛) ∈ ℝ ∧ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ ∧ ((𝑛 · (𝑛 − 1)) ∈ ℝ ∧ 0 < (𝑛 · (𝑛 − 1)))) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
1117, 22, 29, 109, 110syl112anc 1369 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
112108, 111mpbird 259 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
1131, 12, 22, 112fsumle 15146 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
114 fvoveq1 7171 . . . . . 6 (𝑘 = 𝑛 → (√‘(𝑘 − 1)) = (√‘(𝑛 − 1)))
115114oveq2d 7164 . . . . 5 (𝑘 = 𝑛 → (2 / (√‘(𝑘 − 1))) = (2 / (√‘(𝑛 − 1))))
116 fvoveq1 7171 . . . . . 6 (𝑘 = (𝑛 + 1) → (√‘(𝑘 − 1)) = (√‘((𝑛 + 1) − 1)))
117116oveq2d 7164 . . . . 5 (𝑘 = (𝑛 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝑛 + 1) − 1))))
118 oveq1 7155 . . . . . . . . . 10 (𝑘 = 2 → (𝑘 − 1) = (2 − 1))
119 2m1e1 11755 . . . . . . . . . 10 (2 − 1) = 1
120118, 119syl6eq 2870 . . . . . . . . 9 (𝑘 = 2 → (𝑘 − 1) = 1)
121120fveq2d 6667 . . . . . . . 8 (𝑘 = 2 → (√‘(𝑘 − 1)) = (√‘1))
122 sqrt1 14623 . . . . . . . 8 (√‘1) = 1
123121, 122syl6eq 2870 . . . . . . 7 (𝑘 = 2 → (√‘(𝑘 − 1)) = 1)
124123oveq2d 7164 . . . . . 6 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = (2 / 1))
12567div1i 11360 . . . . . 6 (2 / 1) = 2
126124, 125syl6eq 2870 . . . . 5 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = 2)
127 fvoveq1 7171 . . . . . 6 (𝑘 = (𝐴 + 1) → (√‘(𝑘 − 1)) = (√‘((𝐴 + 1) − 1)))
128127oveq2d 7164 . . . . 5 (𝑘 = (𝐴 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝐴 + 1) − 1))))
129 nnz 11996 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
130 eluzp1p1 12262 . . . . . . 7 (𝐴 ∈ (ℤ‘1) → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
131 nnuz 12273 . . . . . . 7 ℕ = (ℤ‘1)
132130, 131eleq2s 2929 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
133 df-2 11692 . . . . . . 7 2 = (1 + 1)
134133fveq2i 6666 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
135132, 134eleqtrrdi 2922 . . . . 5 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘2))
136 elfzuz 12896 . . . . . . . . . . 11 (𝑘 ∈ (2...(𝐴 + 1)) → 𝑘 ∈ (ℤ‘2))
137 uz2m1nn 12315 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → (𝑘 − 1) ∈ ℕ)
138136, 137syl 17 . . . . . . . . . 10 (𝑘 ∈ (2...(𝐴 + 1)) → (𝑘 − 1) ∈ ℕ)
139138adantl 484 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℕ)
140139nnrpd 12421 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℝ+)
141140rpsqrtcld 14763 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (√‘(𝑘 − 1)) ∈ ℝ+)
142 rerpdivcl 12411 . . . . . . 7 ((2 ∈ ℝ ∧ (√‘(𝑘 − 1)) ∈ ℝ+) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
14314, 141, 142sylancr 589 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
144143recnd 10661 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℂ)
145115, 117, 126, 128, 129, 135, 144telfsum 15151 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = (2 − (2 / (√‘((𝐴 + 1) − 1)))))
146 pncan 10884 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
14731, 32, 146sylancl 588 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 + 1) − 1) = 𝑛)
148147fveq2d 6667 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘((𝑛 + 1) − 1)) = (√‘𝑛))
149148oveq2d 7164 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘((𝑛 + 1) − 1))) = (2 / (√‘𝑛)))
150149oveq2d 7164 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
151150sumeq2dv 15052 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
152 nncn 11638 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
153 pncan 10884 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
154152, 32, 153sylancl 588 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
155154fveq2d 6667 . . . . . 6 (𝐴 ∈ ℕ → (√‘((𝐴 + 1) − 1)) = (√‘𝐴))
156155oveq2d 7164 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘((𝐴 + 1) − 1))) = (2 / (√‘𝐴)))
157156oveq2d 7164 . . . 4 (𝐴 ∈ ℕ → (2 − (2 / (√‘((𝐴 + 1) − 1)))) = (2 − (2 / (√‘𝐴))))
158145, 151, 1573eqtr3d 2862 . . 3 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (2 − (2 / (√‘𝐴))))
159 2rp 12386 . . . . . 6 2 ∈ ℝ+
160 nnrp 12392 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
161160rpsqrtcld 14763 . . . . . 6 (𝐴 ∈ ℕ → (√‘𝐴) ∈ ℝ+)
162 rpdivcl 12406 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝐴) ∈ ℝ+) → (2 / (√‘𝐴)) ∈ ℝ+)
163159, 161, 162sylancr 589 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ+)
164163rpge0d 12427 . . . 4 (𝐴 ∈ ℕ → 0 ≤ (2 / (√‘𝐴)))
165163rpred 12423 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ)
166 subge02 11148 . . . . 5 ((2 ∈ ℝ ∧ (2 / (√‘𝐴)) ∈ ℝ) → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
16714, 165, 166sylancr 589 . . . 4 (𝐴 ∈ ℕ → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
168164, 167mpbid 234 . . 3 (𝐴 ∈ ℕ → (2 − (2 / (√‘𝐴))) ≤ 2)
169158, 168eqbrtrd 5079 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ≤ 2)
17013, 23, 24, 113, 169letrd 10789 1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  cuz 12235  +crp 12381  ...cfz 12884  cexp 13421  csqrt 14584  Σcsu 15034  logclog 25130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-haus 21915  df-cmp 21987  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478  df-limc 24456  df-dv 24457  df-log 25132  df-cxp 25133
This theorem is referenced by:  rplogsumlem2  26053
  Copyright terms: Public domain W3C validator