MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem1 Structured version   Visualization version   GIF version

Theorem rplogsumlem1 24890
Description: Lemma for rplogsum 24933. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Distinct variable group:   𝐴,𝑛

Proof of Theorem rplogsumlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 12589 . . 3 (𝐴 ∈ ℕ → (2...𝐴) ∈ Fin)
2 elfzuz 12164 . . . . . . . 8 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ (ℤ‘2))
3 eluz2nn 11558 . . . . . . . 8 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
42, 3syl 17 . . . . . . 7 (𝑛 ∈ (2...𝐴) → 𝑛 ∈ ℕ)
54adantl 480 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℕ)
65nnrpd 11702 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ+)
76relogcld 24090 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ∈ ℝ)
82adantl 480 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ (ℤ‘2))
9 uz2m1nn 11595 . . . . . 6 (𝑛 ∈ (ℤ‘2) → (𝑛 − 1) ∈ ℕ)
108, 9syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℕ)
115, 10nnmulcld 10915 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℕ)
127, 11nndivred 10916 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
131, 12fsumrecl 14258 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ∈ ℝ)
14 2re 10937 . . . . 5 2 ∈ ℝ
1510nnrpd 11702 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ+)
1615rpsqrtcld 13944 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ+)
17 rerpdivcl 11693 . . . . 5 ((2 ∈ ℝ ∧ (√‘(𝑛 − 1)) ∈ ℝ+) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
1814, 16, 17sylancr 693 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘(𝑛 − 1))) ∈ ℝ)
196rpsqrtcld 13944 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ+)
20 rerpdivcl 11693 . . . . 5 ((2 ∈ ℝ ∧ (√‘𝑛) ∈ ℝ+) → (2 / (√‘𝑛)) ∈ ℝ)
2114, 19, 20sylancr 693 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘𝑛)) ∈ ℝ)
2218, 21resubcld 10309 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
231, 22fsumrecl 14258 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ)
2414a1i 11 . 2 (𝐴 ∈ ℕ → 2 ∈ ℝ)
2516rpred 11704 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℝ)
265nnred 10882 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℝ)
27 peano2rem 10199 . . . . . . . 8 (𝑛 ∈ ℝ → (𝑛 − 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℝ)
2926, 28remulcld 9926 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) ∈ ℝ)
3029, 22remulcld 9926 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) ∈ ℝ)
315nncnd 10883 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 𝑛 ∈ ℂ)
32 ax-1cn 9850 . . . . . . . 8 1 ∈ ℂ
33 npcan 10141 . . . . . . . 8 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 − 1) + 1) = 𝑛)
3431, 32, 33sylancl 692 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) + 1) = 𝑛)
3534fveq2d 6092 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) = (log‘𝑛))
3615rpge0d 11708 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ (𝑛 − 1))
37 loglesqrt 24216 . . . . . . 7 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3828, 36, 37syl2anc 690 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘((𝑛 − 1) + 1)) ≤ (√‘(𝑛 − 1)))
3935, 38eqbrtrrd 4601 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ (√‘(𝑛 − 1)))
4019rpred 11704 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℝ)
4140, 25readdcld 9925 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ∈ ℝ)
42 remulcl 9877 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℝ ∧ 2 ∈ ℝ) → ((√‘𝑛) · 2) ∈ ℝ)
4340, 14, 42sylancl 692 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) ∈ ℝ)
4440, 25resubcld 10309 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ)
4526lem1d 10806 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ≤ 𝑛)
466rpge0d 11708 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ 𝑛)
4728, 36, 26, 46sqrtled 13959 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 − 1) ≤ 𝑛 ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
4845, 47mpbid 220 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (√‘𝑛))
4940, 25subge0d 10466 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))) ↔ (√‘(𝑛 − 1)) ≤ (√‘𝑛)))
5048, 49mpbird 245 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 ≤ ((√‘𝑛) − (√‘(𝑛 − 1))))
5125, 40, 40, 48leadd2dd 10491 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) + (√‘𝑛)))
5219rpcnd 11706 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘𝑛) ∈ ℂ)
5352times2d 11123 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · 2) = ((√‘𝑛) + (√‘𝑛)))
5451, 53breqtrrd 4605 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) + (√‘(𝑛 − 1))) ≤ ((√‘𝑛) · 2))
5541, 43, 44, 50, 54lemul1ad 10812 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) ≤ (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
5631sqsqrtd 13972 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛)↑2) = 𝑛)
57 subcl 10131 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − 1) ∈ ℂ)
5831, 32, 57sylancl 692 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − 1) ∈ ℂ)
5958sqsqrtd 13972 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1))↑2) = (𝑛 − 1))
6056, 59oveq12d 6545 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (𝑛 − (𝑛 − 1)))
6116rpcnd 11706 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ∈ ℂ)
62 subsq 12789 . . . . . . . . . . 11 (((√‘𝑛) ∈ ℂ ∧ (√‘(𝑛 − 1)) ∈ ℂ) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
6352, 61, 62syl2anc 690 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛)↑2) − ((√‘(𝑛 − 1))↑2)) = (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))))
64 nncan 10161 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑛 − (𝑛 − 1)) = 1)
6531, 32, 64sylancl 692 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 − (𝑛 − 1)) = 1)
6660, 63, 653eqtr3d 2651 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) + (√‘(𝑛 − 1))) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = 1)
67 2cn 10938 . . . . . . . . . . 11 2 ∈ ℂ
6867a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 2 ∈ ℂ)
6944recnd 9924 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℂ)
7052, 68, 69mulassd 9919 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · 2) · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
7155, 66, 703brtr3d 4608 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
72 1red 9911 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 1 ∈ ℝ)
73 remulcl 9877 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ ((√‘𝑛) − (√‘(𝑛 − 1))) ∈ ℝ) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7414, 44, 73sylancr 693 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℝ)
7540, 74remulcld 9926 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ∈ ℝ)
7672, 75, 16lemul1d 11747 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 ≤ ((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) ↔ (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1)))))
7771, 76mpbid 220 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) ≤ (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))))
7861mulid2d 9914 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (1 · (√‘(𝑛 − 1))) = (√‘(𝑛 − 1)))
7974recnd 9924 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) ∈ ℂ)
8052, 79, 61mul32d 10097 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))) · (√‘(𝑛 − 1))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
8177, 78, 803brtr3d 4608 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
82 remsqsqrt 13791 . . . . . . . . . . 11 ((𝑛 ∈ ℝ ∧ 0 ≤ 𝑛) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
8326, 46, 82syl2anc 690 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘𝑛)) = 𝑛)
84 remsqsqrt 13791 . . . . . . . . . . 11 (((𝑛 − 1) ∈ ℝ ∧ 0 ≤ (𝑛 − 1)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8528, 36, 84syl2anc 690 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1))) = (𝑛 − 1))
8683, 85oveq12d 6545 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (𝑛 · (𝑛 − 1)))
8752, 52, 61, 61mul4d 10099 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘𝑛)) · ((√‘(𝑛 − 1)) · (√‘(𝑛 − 1)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8886, 87eqtr3d 2645 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (𝑛 · (𝑛 − 1)) = (((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))))
8916rpcnne0d 11713 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0))
9019rpcnne0d 11713 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))
91 divsubdiv 10590 . . . . . . . . . 10 (((2 ∈ ℂ ∧ 2 ∈ ℂ) ∧ (((√‘(𝑛 − 1)) ∈ ℂ ∧ (√‘(𝑛 − 1)) ≠ 0) ∧ ((√‘𝑛) ∈ ℂ ∧ (√‘𝑛) ≠ 0))) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9268, 68, 89, 90, 91syl22anc 1318 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9368, 52, 61subdid 10336 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) = ((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))))
9452, 61mulcomd 9917 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) = ((√‘(𝑛 − 1)) · (√‘𝑛)))
9593, 94oveq12d 6545 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) = (((2 · (√‘𝑛)) − (2 · (√‘(𝑛 − 1)))) / ((√‘(𝑛 − 1)) · (√‘𝑛))))
9692, 95eqtr4d 2646 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))
9788, 96oveq12d 6545 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))))
9852, 61mulcld 9916 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℂ)
9919, 16rpmulcld 11720 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ∈ ℝ+)
10074, 99rerpdivcld 11735 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℝ)
101100recnd 9924 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))) ∈ ℂ)
10298, 98, 101mulassd 9919 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((((√‘𝑛) · (√‘(𝑛 − 1))) · ((√‘𝑛) · (√‘(𝑛 − 1)))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))))
10399rpne0d 11709 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((√‘𝑛) · (√‘(𝑛 − 1))) ≠ 0)
10479, 98, 103divcan2d 10652 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1))))) = (2 · ((√‘𝑛) − (√‘(𝑛 − 1)))))
105104oveq2d 6543 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((√‘𝑛) · (√‘(𝑛 − 1))) · (((√‘𝑛) · (√‘(𝑛 − 1))) · ((2 · ((√‘𝑛) − (√‘(𝑛 − 1)))) / ((√‘𝑛) · (√‘(𝑛 − 1)))))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10697, 102, 1053eqtrd 2647 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))) = (((√‘𝑛) · (√‘(𝑛 − 1))) · (2 · ((√‘𝑛) − (√‘(𝑛 − 1))))))
10781, 106breqtrrd 4605 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘(𝑛 − 1)) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
1087, 25, 30, 39, 107letrd 10045 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛)))))
10911nngt0d 10911 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → 0 < (𝑛 · (𝑛 − 1)))
110 ledivmul 10748 . . . . 5 (((log‘𝑛) ∈ ℝ ∧ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ∈ ℝ ∧ ((𝑛 · (𝑛 − 1)) ∈ ℝ ∧ 0 < (𝑛 · (𝑛 − 1)))) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
1117, 22, 29, 109, 110syl112anc 1321 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ↔ (log‘𝑛) ≤ ((𝑛 · (𝑛 − 1)) · ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))))
112108, 111mpbird 245 . . 3 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
1131, 12, 22, 112fsumle 14318 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
114 oveq1 6534 . . . . . . 7 (𝑘 = 𝑛 → (𝑘 − 1) = (𝑛 − 1))
115114fveq2d 6092 . . . . . 6 (𝑘 = 𝑛 → (√‘(𝑘 − 1)) = (√‘(𝑛 − 1)))
116115oveq2d 6543 . . . . 5 (𝑘 = 𝑛 → (2 / (√‘(𝑘 − 1))) = (2 / (√‘(𝑛 − 1))))
117 oveq1 6534 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝑘 − 1) = ((𝑛 + 1) − 1))
118117fveq2d 6092 . . . . . 6 (𝑘 = (𝑛 + 1) → (√‘(𝑘 − 1)) = (√‘((𝑛 + 1) − 1)))
119118oveq2d 6543 . . . . 5 (𝑘 = (𝑛 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝑛 + 1) − 1))))
120 oveq1 6534 . . . . . . . . . 10 (𝑘 = 2 → (𝑘 − 1) = (2 − 1))
121 2m1e1 10982 . . . . . . . . . 10 (2 − 1) = 1
122120, 121syl6eq 2659 . . . . . . . . 9 (𝑘 = 2 → (𝑘 − 1) = 1)
123122fveq2d 6092 . . . . . . . 8 (𝑘 = 2 → (√‘(𝑘 − 1)) = (√‘1))
124 sqrt1 13806 . . . . . . . 8 (√‘1) = 1
125123, 124syl6eq 2659 . . . . . . 7 (𝑘 = 2 → (√‘(𝑘 − 1)) = 1)
126125oveq2d 6543 . . . . . 6 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = (2 / 1))
12767div1i 10602 . . . . . 6 (2 / 1) = 2
128126, 127syl6eq 2659 . . . . 5 (𝑘 = 2 → (2 / (√‘(𝑘 − 1))) = 2)
129 oveq1 6534 . . . . . . 7 (𝑘 = (𝐴 + 1) → (𝑘 − 1) = ((𝐴 + 1) − 1))
130129fveq2d 6092 . . . . . 6 (𝑘 = (𝐴 + 1) → (√‘(𝑘 − 1)) = (√‘((𝐴 + 1) − 1)))
131130oveq2d 6543 . . . . 5 (𝑘 = (𝐴 + 1) → (2 / (√‘(𝑘 − 1))) = (2 / (√‘((𝐴 + 1) − 1))))
132 nnz 11232 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
133 eluzp1p1 11545 . . . . . . 7 (𝐴 ∈ (ℤ‘1) → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
134 nnuz 11555 . . . . . . 7 ℕ = (ℤ‘1)
135133, 134eleq2s 2705 . . . . . 6 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘(1 + 1)))
136 df-2 10926 . . . . . . 7 2 = (1 + 1)
137136fveq2i 6091 . . . . . 6 (ℤ‘2) = (ℤ‘(1 + 1))
138135, 137syl6eleqr 2698 . . . . 5 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ (ℤ‘2))
139 elfzuz 12164 . . . . . . . . . . 11 (𝑘 ∈ (2...(𝐴 + 1)) → 𝑘 ∈ (ℤ‘2))
140 uz2m1nn 11595 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘2) → (𝑘 − 1) ∈ ℕ)
141139, 140syl 17 . . . . . . . . . 10 (𝑘 ∈ (2...(𝐴 + 1)) → (𝑘 − 1) ∈ ℕ)
142141adantl 480 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℕ)
143142nnrpd 11702 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (𝑘 − 1) ∈ ℝ+)
144143rpsqrtcld 13944 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (√‘(𝑘 − 1)) ∈ ℝ+)
145 rerpdivcl 11693 . . . . . . 7 ((2 ∈ ℝ ∧ (√‘(𝑘 − 1)) ∈ ℝ+) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
14614, 144, 145sylancr 693 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℝ)
147146recnd 9924 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (2...(𝐴 + 1))) → (2 / (√‘(𝑘 − 1))) ∈ ℂ)
148116, 119, 128, 131, 132, 138, 147telfsum 14323 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = (2 − (2 / (√‘((𝐴 + 1) − 1)))))
149 pncan 10138 . . . . . . . . 9 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
15031, 32, 149sylancl 692 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((𝑛 + 1) − 1) = 𝑛)
151150fveq2d 6092 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (√‘((𝑛 + 1) − 1)) = (√‘𝑛))
152151oveq2d 6543 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → (2 / (√‘((𝑛 + 1) − 1))) = (2 / (√‘𝑛)))
153152oveq2d 6543 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑛 ∈ (2...𝐴)) → ((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = ((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
154153sumeq2dv 14227 . . . 4 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘((𝑛 + 1) − 1)))) = Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))))
155 nncn 10875 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
156 pncan 10138 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + 1) − 1) = 𝐴)
157155, 32, 156sylancl 692 . . . . . . 7 (𝐴 ∈ ℕ → ((𝐴 + 1) − 1) = 𝐴)
158157fveq2d 6092 . . . . . 6 (𝐴 ∈ ℕ → (√‘((𝐴 + 1) − 1)) = (√‘𝐴))
159158oveq2d 6543 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘((𝐴 + 1) − 1))) = (2 / (√‘𝐴)))
160159oveq2d 6543 . . . 4 (𝐴 ∈ ℕ → (2 − (2 / (√‘((𝐴 + 1) − 1)))) = (2 − (2 / (√‘𝐴))))
161148, 154, 1603eqtr3d 2651 . . 3 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) = (2 − (2 / (√‘𝐴))))
162 2rp 11669 . . . . . 6 2 ∈ ℝ+
163 nnrp 11674 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ+)
164163rpsqrtcld 13944 . . . . . 6 (𝐴 ∈ ℕ → (√‘𝐴) ∈ ℝ+)
165 rpdivcl 11688 . . . . . 6 ((2 ∈ ℝ+ ∧ (√‘𝐴) ∈ ℝ+) → (2 / (√‘𝐴)) ∈ ℝ+)
166162, 164, 165sylancr 693 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ+)
167166rpge0d 11708 . . . 4 (𝐴 ∈ ℕ → 0 ≤ (2 / (√‘𝐴)))
168166rpred 11704 . . . . 5 (𝐴 ∈ ℕ → (2 / (√‘𝐴)) ∈ ℝ)
169 subge02 10393 . . . . 5 ((2 ∈ ℝ ∧ (2 / (√‘𝐴)) ∈ ℝ) → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
17014, 168, 169sylancr 693 . . . 4 (𝐴 ∈ ℕ → (0 ≤ (2 / (√‘𝐴)) ↔ (2 − (2 / (√‘𝐴))) ≤ 2))
171167, 170mpbid 220 . . 3 (𝐴 ∈ ℕ → (2 − (2 / (√‘𝐴))) ≤ 2)
172161, 171eqbrtrd 4599 . 2 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((2 / (√‘(𝑛 − 1))) − (2 / (√‘𝑛))) ≤ 2)
17313, 23, 24, 113, 172letrd 10045 1 (𝐴 ∈ ℕ → Σ𝑛 ∈ (2...𝐴)((log‘𝑛) / (𝑛 · (𝑛 − 1))) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779   class class class wbr 4577  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  cuz 11519  +crp 11664  ...cfz 12152  cexp 12677  csqrt 13767  Σcsu 14210  logclog 24022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-tan 14587  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-cmp 20942  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024  df-cxp 24025
This theorem is referenced by:  rplogsumlem2  24891
  Copyright terms: Public domain W3C validator