MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem12 Structured version   Visualization version   GIF version

Theorem rpnnen2lem12 14739
Description: Lemma for rpnnen2 14740. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem12 𝒫 ℕ ≼ (0[,]1)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem12
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6555 . 2 (0[,]1) ∈ V
2 elpwi 4116 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 𝑦 ⊆ ℕ)
3 nnuz 11555 . . . . . . 7 ℕ = (ℤ‘1)
43sumeq1i 14222 . . . . . 6 Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘)
5 1nn 10878 . . . . . . 7 1 ∈ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem6 14733 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
85, 7mpan2 702 . . . . . 6 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
94, 8syl5eqel 2691 . . . . 5 (𝑦 ⊆ ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
102, 9syl 17 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
11 1zzd 11241 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℤ)
12 eqidd 2610 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝑘))
136rpnnen2lem2 14729 . . . . . . 7 (𝑦 ⊆ ℕ → (𝐹𝑦):ℕ⟶ℝ)
142, 13syl 17 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → (𝐹𝑦):ℕ⟶ℝ)
1514ffvelrnda 6252 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) ∈ ℝ)
166rpnnen2lem5 14732 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
172, 5, 16sylancl 692 . . . . 5 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
18 ssid 3586 . . . . . . . 8 ℕ ⊆ ℕ
196rpnnen2lem4 14731 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2018, 19mp3an2 1403 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2120simpld 473 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
222, 21sylan 486 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
233, 11, 12, 15, 17, 22isumge0 14285 . . . 4 (𝑦 ∈ 𝒫 ℕ → 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
24 halfre 11093 . . . . . 6 (1 / 2) ∈ ℝ
2524a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ∈ ℝ)
26 1re 9895 . . . . . 6 1 ∈ ℝ
2726a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℝ)
286rpnnen2lem7 14734 . . . . . . . . 9 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
2918, 5, 28mp3an23 1407 . . . . . . . 8 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
302, 29syl 17 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
31 eqid 2609 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
32 eqidd 2610 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((𝐹‘ℕ)‘𝑘))
33 elnnuz 11556 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
346rpnnen2lem2 14729 . . . . . . . . . . . . 13 (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
3518, 34ax-mp 5 . . . . . . . . . . . 12 (𝐹‘ℕ):ℕ⟶ℝ
3635ffvelrni 6251 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℝ)
3736recnd 9924 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3833, 37sylbir 223 . . . . . . . . 9 (𝑘 ∈ (ℤ‘1) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3938adantl 480 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
406rpnnen2lem3 14730 . . . . . . . . 9 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
4140a1i 11 . . . . . . . 8 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2))
4231, 11, 32, 39, 41isumclim 14276 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘) = (1 / 2))
4330, 42breqtrd 4603 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ (1 / 2))
444, 43syl5eqbr 4612 . . . . 5 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ (1 / 2))
45 halflt1 11097 . . . . . . 7 (1 / 2) < 1
4624, 26, 45ltleii 10011 . . . . . 6 (1 / 2) ≤ 1
4746a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ≤ 1)
4810, 25, 27, 44, 47letrd 10045 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1)
49 0re 9896 . . . . 5 0 ∈ ℝ
5049, 26elicc2i 12066 . . . 4 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1) ↔ (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∧ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1))
5110, 23, 48, 50syl3anbrc 1238 . . 3 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1))
52 elpwi 4116 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 ℕ → 𝑧 ⊆ ℕ)
53 ssdifss 3702 . . . . . . . . . . . 12 (𝑦 ⊆ ℕ → (𝑦𝑧) ⊆ ℕ)
54 ssdifss 3702 . . . . . . . . . . . 12 (𝑧 ⊆ ℕ → (𝑧𝑦) ⊆ ℕ)
55 unss 3748 . . . . . . . . . . . . 13 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5655biimpi 204 . . . . . . . . . . . 12 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5753, 54, 56syl2an 492 . . . . . . . . . . 11 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
582, 52, 57syl2an 492 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
59 eqss 3582 . . . . . . . . . . . . 13 (𝑦 = 𝑧 ↔ (𝑦𝑧𝑧𝑦))
60 ssdif0 3895 . . . . . . . . . . . . . 14 (𝑦𝑧 ↔ (𝑦𝑧) = ∅)
61 ssdif0 3895 . . . . . . . . . . . . . 14 (𝑧𝑦 ↔ (𝑧𝑦) = ∅)
6260, 61anbi12i 728 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝑦) ↔ ((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅))
63 un00 3962 . . . . . . . . . . . . 13 (((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6459, 62, 633bitri 284 . . . . . . . . . . . 12 (𝑦 = 𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6564necon3bii 2833 . . . . . . . . . . 11 (𝑦𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
6665biimpi 204 . . . . . . . . . 10 (𝑦𝑧 → ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
67 nnwo 11585 . . . . . . . . . 10 ((((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ ∧ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6858, 66, 67syl2an 492 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑦𝑧) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6968ex 448 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛))
7058sselda 3567 . . . . . . . . . 10 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → 𝑚 ∈ ℕ)
71 df-ral 2900 . . . . . . . . . . . 12 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛))
72 con34b 304 . . . . . . . . . . . . . 14 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))))
73 eldif 3549 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑦𝑧) ↔ (𝑛𝑦 ∧ ¬ 𝑛𝑧))
74 eldif 3549 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑧𝑦) ↔ (𝑛𝑧 ∧ ¬ 𝑛𝑦))
7573, 74orbi12i 541 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
76 elun 3714 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)))
77 xor 930 . . . . . . . . . . . . . . . . 17 (¬ (𝑛𝑦𝑛𝑧) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
7875, 76, 773bitr4ri 291 . . . . . . . . . . . . . . . 16 (¬ (𝑛𝑦𝑛𝑧) ↔ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)))
7978con1bii 344 . . . . . . . . . . . . . . 15 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛𝑦𝑛𝑧))
8079imbi2i 324 . . . . . . . . . . . . . 14 ((¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8172, 80bitri 262 . . . . . . . . . . . . 13 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8281albii 1736 . . . . . . . . . . . 12 (∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8371, 82bitri 262 . . . . . . . . . . 11 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
84 alral 2911 . . . . . . . . . . . 12 (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
85 nnre 10874 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
86 nnre 10874 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
87 ltnle 9968 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8885, 86, 87syl2anr 493 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8988imbi1d 329 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
9089ralbidva 2967 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
9184, 90syl5ibr 234 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9283, 91syl5bi 230 . . . . . . . . . 10 (𝑚 ∈ ℕ → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9370, 92syl 17 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9493reximdva 2999 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9569, 94syld 45 . . . . . . 7 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
96 rexun 3754 . . . . . . 7 (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9795, 96syl6ib 239 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))))
98 simpll 785 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
99 simplr 787 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
100 simprl 789 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑦𝑧))
101 simprr 791 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
102 biid 249 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
1036, 98, 99, 100, 101, 102rpnnen2lem11 14738 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
104103rexlimdvaa 3013 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
105 simplr 787 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
106 simpll 785 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
107 simprl 789 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑧𝑦))
108 simprr 791 . . . . . . . . . . 11 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
109 bicom 210 . . . . . . . . . . . . 13 ((𝑛𝑧𝑛𝑦) ↔ (𝑛𝑦𝑛𝑧))
110109imbi2i 324 . . . . . . . . . . . 12 ((𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
111110ralbii 2962 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
112108, 111sylibr 222 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)))
113 eqcom 2616 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
1146, 105, 106, 107, 112, 113rpnnen2lem11 14738 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
115114rexlimdvaa 3013 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
116104, 115jaod 393 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
1172, 52, 116syl2an 492 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
11897, 117syld 45 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
119118necon4ad 2800 . . . 4 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) → 𝑦 = 𝑧))
120 fveq2 6088 . . . . . 6 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
121120fveq1d 6090 . . . . 5 (𝑦 = 𝑧 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑧)‘𝑘))
122121sumeq2sdv 14228 . . . 4 (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
123119, 122impbid1 213 . . 3 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ 𝑦 = 𝑧))
12451, 123dom2 7861 . 2 ((0[,]1) ∈ V → 𝒫 ℕ ≼ (0[,]1))
1251, 124ax-mp 5 1 𝒫 ℕ ≼ (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  wal 1472   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  Vcvv 3172  cdif 3536  cun 3537  wss 3539  c0 3873  ifcif 4035  𝒫 cpw 4107   class class class wbr 4577  cmpt 4637  dom cdm 5028  wf 5786  cfv 5790  (class class class)co 6527  cdom 7816  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   < clt 9930  cle 9931   / cdiv 10533  cn 10867  2c2 10917  3c3 10918  cuz 11519  [,]cicc 12005  seqcseq 12618  cexp 12677  cli 14009  Σcsu 14210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211
This theorem is referenced by:  rpnnen2  14740
  Copyright terms: Public domain W3C validator