MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem12 Structured version   Visualization version   GIF version

Theorem rpnnen2lem12 15581
Description: Lemma for rpnnen2 15582. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem12 𝒫 ℕ ≼ (0[,]1)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem12
Dummy variables 𝑚 𝑦 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7192 . 2 (0[,]1) ∈ V
2 elpwi 4551 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 𝑦 ⊆ ℕ)
3 nnuz 12284 . . . . . . 7 ℕ = (ℤ‘1)
43sumeq1i 15058 . . . . . 6 Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘)
5 1nn 11652 . . . . . . 7 1 ∈ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem6 15575 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
85, 7mpan2 689 . . . . . 6 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ∈ ℝ)
94, 8eqeltrid 2920 . . . . 5 (𝑦 ⊆ ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
102, 9syl 17 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ)
11 1zzd 12016 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℤ)
12 eqidd 2825 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝑘))
136rpnnen2lem2 15571 . . . . . . 7 (𝑦 ⊆ ℕ → (𝐹𝑦):ℕ⟶ℝ)
142, 13syl 17 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → (𝐹𝑦):ℕ⟶ℝ)
1514ffvelrnda 6854 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑦)‘𝑘) ∈ ℝ)
166rpnnen2lem5 15574 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 1 ∈ ℕ) → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
172, 5, 16sylancl 588 . . . . 5 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹𝑦)) ∈ dom ⇝ )
18 ssid 3992 . . . . . . . 8 ℕ ⊆ ℕ
196rpnnen2lem4 15573 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2018, 19mp3an2 1445 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝑦)‘𝑘) ∧ ((𝐹𝑦)‘𝑘) ≤ ((𝐹‘ℕ)‘𝑘)))
2120simpld 497 . . . . . 6 ((𝑦 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
222, 21sylan 582 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑦)‘𝑘))
233, 11, 12, 15, 17, 22isumge0 15124 . . . 4 (𝑦 ∈ 𝒫 ℕ → 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
24 halfre 11854 . . . . . 6 (1 / 2) ∈ ℝ
2524a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ∈ ℝ)
26 1re 10644 . . . . . 6 1 ∈ ℝ
2726a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → 1 ∈ ℝ)
286rpnnen2lem7 15576 . . . . . . . . 9 ((𝑦 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 1 ∈ ℕ) → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
2918, 5, 28mp3an23 1449 . . . . . . . 8 (𝑦 ⊆ ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
302, 29syl 17 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘))
31 eqid 2824 . . . . . . . 8 (ℤ‘1) = (ℤ‘1)
32 eqidd 2825 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((𝐹‘ℕ)‘𝑘))
33 elnnuz 12285 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
346rpnnen2lem2 15571 . . . . . . . . . . . . 13 (ℕ ⊆ ℕ → (𝐹‘ℕ):ℕ⟶ℝ)
3518, 34ax-mp 5 . . . . . . . . . . . 12 (𝐹‘ℕ):ℕ⟶ℝ
3635ffvelrni 6853 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℝ)
3736recnd 10672 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3833, 37sylbir 237 . . . . . . . . 9 (𝑘 ∈ (ℤ‘1) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
3938adantl 484 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) ∈ ℂ)
406rpnnen2lem3 15572 . . . . . . . . 9 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
4140a1i 11 . . . . . . . 8 (𝑦 ∈ 𝒫 ℕ → seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2))
4231, 11, 32, 39, 41isumclim 15115 . . . . . . 7 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹‘ℕ)‘𝑘) = (1 / 2))
4330, 42breqtrd 5095 . . . . . 6 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ (ℤ‘1)((𝐹𝑦)‘𝑘) ≤ (1 / 2))
444, 43eqbrtrid 5104 . . . . 5 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ (1 / 2))
45 halflt1 11858 . . . . . . 7 (1 / 2) < 1
4624, 26, 45ltleii 10766 . . . . . 6 (1 / 2) ≤ 1
4746a1i 11 . . . . 5 (𝑦 ∈ 𝒫 ℕ → (1 / 2) ≤ 1)
4810, 25, 27, 44, 47letrd 10800 . . . 4 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1)
49 elicc01 12857 . . . 4 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1) ↔ (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∧ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ≤ 1))
5010, 23, 48, 49syl3anbrc 1339 . . 3 (𝑦 ∈ 𝒫 ℕ → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) ∈ (0[,]1))
51 elpwi 4551 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 ℕ → 𝑧 ⊆ ℕ)
52 ssdifss 4115 . . . . . . . . . . . 12 (𝑦 ⊆ ℕ → (𝑦𝑧) ⊆ ℕ)
53 ssdifss 4115 . . . . . . . . . . . 12 (𝑧 ⊆ ℕ → (𝑧𝑦) ⊆ ℕ)
54 unss 4163 . . . . . . . . . . . . 13 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5554biimpi 218 . . . . . . . . . . . 12 (((𝑦𝑧) ⊆ ℕ ∧ (𝑧𝑦) ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
5652, 53, 55syl2an 597 . . . . . . . . . . 11 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
572, 51, 56syl2an 597 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ)
58 eqss 3985 . . . . . . . . . . . . 13 (𝑦 = 𝑧 ↔ (𝑦𝑧𝑧𝑦))
59 ssdif0 4326 . . . . . . . . . . . . . 14 (𝑦𝑧 ↔ (𝑦𝑧) = ∅)
60 ssdif0 4326 . . . . . . . . . . . . . 14 (𝑧𝑦 ↔ (𝑧𝑦) = ∅)
6159, 60anbi12i 628 . . . . . . . . . . . . 13 ((𝑦𝑧𝑧𝑦) ↔ ((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅))
62 un00 4397 . . . . . . . . . . . . 13 (((𝑦𝑧) = ∅ ∧ (𝑧𝑦) = ∅) ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6358, 61, 623bitri 299 . . . . . . . . . . . 12 (𝑦 = 𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) = ∅)
6463necon3bii 3071 . . . . . . . . . . 11 (𝑦𝑧 ↔ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
6564biimpi 218 . . . . . . . . . 10 (𝑦𝑧 → ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅)
66 nnwo 12316 . . . . . . . . . 10 ((((𝑦𝑧) ∪ (𝑧𝑦)) ⊆ ℕ ∧ ((𝑦𝑧) ∪ (𝑧𝑦)) ≠ ∅) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6757, 65, 66syl2an 597 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑦𝑧) → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛)
6867ex 415 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛))
6957sselda 3970 . . . . . . . . . 10 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → 𝑚 ∈ ℕ)
70 df-ral 3146 . . . . . . . . . . . 12 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛))
71 con34b 318 . . . . . . . . . . . . . 14 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))))
72 eldif 3949 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑦𝑧) ↔ (𝑛𝑦 ∧ ¬ 𝑛𝑧))
73 eldif 3949 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (𝑧𝑦) ↔ (𝑛𝑧 ∧ ¬ 𝑛𝑦))
7472, 73orbi12i 911 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
75 elun 4128 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛 ∈ (𝑦𝑧) ∨ 𝑛 ∈ (𝑧𝑦)))
76 xor 1011 . . . . . . . . . . . . . . . . 17 (¬ (𝑛𝑦𝑛𝑧) ↔ ((𝑛𝑦 ∧ ¬ 𝑛𝑧) ∨ (𝑛𝑧 ∧ ¬ 𝑛𝑦)))
7774, 75, 763bitr4ri 306 . . . . . . . . . . . . . . . 16 (¬ (𝑛𝑦𝑛𝑧) ↔ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)))
7877con1bii 359 . . . . . . . . . . . . . . 15 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) ↔ (𝑛𝑦𝑛𝑧))
7978imbi2i 338 . . . . . . . . . . . . . 14 ((¬ 𝑚𝑛 → ¬ 𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8071, 79bitri 277 . . . . . . . . . . . . 13 ((𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8180albii 1819 . . . . . . . . . . . 12 (∀𝑛(𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦)) → 𝑚𝑛) ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
8270, 81bitri 277 . . . . . . . . . . 11 (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 ↔ ∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
83 alral 3157 . . . . . . . . . . . 12 (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧)))
84 nnre 11648 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
85 nnre 11648 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
86 ltnle 10723 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℝ ∧ 𝑚 ∈ ℝ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8784, 85, 86syl2anr 598 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (𝑛 < 𝑚 ↔ ¬ 𝑚𝑛))
8887imbi1d 344 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ) → ((𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
8988ralbidva 3199 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ ∀𝑛 ∈ ℕ (¬ 𝑚𝑛 → (𝑛𝑦𝑛𝑧))))
9083, 89syl5ibr 248 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (∀𝑛𝑚𝑛 → (𝑛𝑦𝑛𝑧)) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9182, 90syl5bi 244 . . . . . . . . . 10 (𝑚 ∈ ℕ → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9269, 91syl 17 . . . . . . . . 9 (((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) ∧ 𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))) → (∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9392reximdva 3277 . . . . . . . 8 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))𝑚𝑛 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9468, 93syld 47 . . . . . . 7 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
95 rexun 4169 . . . . . . 7 (∃𝑚 ∈ ((𝑦𝑧) ∪ (𝑧𝑦))∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ↔ (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))))
9694, 95syl6ib 253 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))))
97 simpll 765 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
98 simplr 767 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
99 simprl 769 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑦𝑧))
100 simprr 771 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
101 biid 263 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
1026, 97, 98, 99, 100, 101rpnnen2lem11 15580 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑦𝑧) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
103102rexlimdvaa 3288 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
104 simplr 767 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑧 ⊆ ℕ)
105 simpll 765 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑦 ⊆ ℕ)
106 simprl 769 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → 𝑚 ∈ (𝑧𝑦))
107 simprr 771 . . . . . . . . . . 11 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
108 bicom 224 . . . . . . . . . . . . 13 ((𝑛𝑧𝑛𝑦) ↔ (𝑛𝑦𝑛𝑧))
109108imbi2i 338 . . . . . . . . . . . 12 ((𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
110109ralbii 3168 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)) ↔ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))
111107, 110sylibr 236 . . . . . . . . . 10 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑧𝑛𝑦)))
112 eqcom 2831 . . . . . . . . . 10 𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘))
1136, 104, 105, 106, 111, 112rpnnen2lem11 15580 . . . . . . . . 9 (((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) ∧ (𝑚 ∈ (𝑧𝑦) ∧ ∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
114113rexlimdvaa 3288 . . . . . . . 8 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → (∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
115103, 114jaod 855 . . . . . . 7 ((𝑦 ⊆ ℕ ∧ 𝑧 ⊆ ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
1162, 51, 115syl2an 597 . . . . . 6 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → ((∃𝑚 ∈ (𝑦𝑧)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧)) ∨ ∃𝑚 ∈ (𝑧𝑦)∀𝑛 ∈ ℕ (𝑛 < 𝑚 → (𝑛𝑦𝑛𝑧))) → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
11796, 116syld 47 . . . . 5 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (𝑦𝑧 → ¬ Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘)))
118117necon4ad 3038 . . . 4 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) → 𝑦 = 𝑧))
119 fveq2 6673 . . . . . 6 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
120119fveq1d 6675 . . . . 5 (𝑦 = 𝑧 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑧)‘𝑘))
121120sumeq2sdv 15064 . . . 4 (𝑦 = 𝑧 → Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘))
122118, 121impbid1 227 . . 3 ((𝑦 ∈ 𝒫 ℕ ∧ 𝑧 ∈ 𝒫 ℕ) → (Σ𝑘 ∈ ℕ ((𝐹𝑦)‘𝑘) = Σ𝑘 ∈ ℕ ((𝐹𝑧)‘𝑘) ↔ 𝑦 = 𝑧))
12350, 122dom2 8555 . 2 ((0[,]1) ∈ V → 𝒫 ℕ ≼ (0[,]1))
1241, 123ax-mp 5 1 𝒫 ℕ ≼ (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wal 1534   = wceq 1536  wcel 2113  wne 3019  wral 3141  wrex 3142  Vcvv 3497  cdif 3936  cun 3937  wss 3939  c0 4294  ifcif 4470  𝒫 cpw 4542   class class class wbr 5069  cmpt 5149  dom cdm 5558  wf 6354  cfv 6358  (class class class)co 7159  cdom 8510  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   < clt 10678  cle 10679   / cdiv 11300  cn 11641  2c2 11695  3c3 11696  cuz 12246  [,]cicc 12744  seqcseq 13372  cexp 13432  cli 14844  Σcsu 15045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046
This theorem is referenced by:  rpnnen2  15582
  Copyright terms: Public domain W3C validator