MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem3 Structured version   Visualization version   GIF version

Theorem rpnnen2lem3 14730
Description: Lemma for rpnnen2 14740. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem3 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1re 9895 . . . . . . 7 1 ∈ ℝ
2 3nn 11033 . . . . . . 7 3 ∈ ℕ
3 nndivre 10903 . . . . . . 7 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
41, 2, 3mp2an 703 . . . . . 6 (1 / 3) ∈ ℝ
54recni 9908 . . . . 5 (1 / 3) ∈ ℂ
65a1i 11 . . . 4 (⊤ → (1 / 3) ∈ ℂ)
7 0re 9896 . . . . . . . 8 0 ∈ ℝ
8 3re 10941 . . . . . . . . 9 3 ∈ ℝ
9 3pos 10961 . . . . . . . . 9 0 < 3
108, 9recgt0ii 10778 . . . . . . . 8 0 < (1 / 3)
117, 4, 10ltleii 10011 . . . . . . 7 0 ≤ (1 / 3)
12 absid 13830 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
134, 11, 12mp2an 703 . . . . . 6 (abs‘(1 / 3)) = (1 / 3)
14 1lt3 11043 . . . . . . 7 1 < 3
15 recgt1 10768 . . . . . . . 8 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
168, 9, 15mp2an 703 . . . . . . 7 (1 < 3 ↔ (1 / 3) < 1)
1714, 16mpbi 218 . . . . . 6 (1 / 3) < 1
1813, 17eqbrtri 4598 . . . . 5 (abs‘(1 / 3)) < 1
1918a1i 11 . . . 4 (⊤ → (abs‘(1 / 3)) < 1)
20 1nn0 11155 . . . . 5 1 ∈ ℕ0
2120a1i 11 . . . 4 (⊤ → 1 ∈ ℕ0)
22 ssid 3586 . . . . . 6 ℕ ⊆ ℕ
23 simpr 475 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
24 nnuz 11555 . . . . . . 7 ℕ = (ℤ‘1)
2523, 24syl6eleqr 2698 . . . . . 6 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
26 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2726rpnnen2lem1 14728 . . . . . 6 ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2822, 25, 27sylancr 693 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2925iftrued 4043 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
3028, 29eqtrd 2643 . . . 4 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘))
316, 19, 21, 30geolim2 14387 . . 3 (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))))
3231trud 1483 . 2 seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))
33 exp1 12683 . . . . 5 ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3))
345, 33ax-mp 5 . . . 4 ((1 / 3)↑1) = (1 / 3)
35 3cn 10942 . . . . . 6 3 ∈ ℂ
36 ax-1cn 9850 . . . . . 6 1 ∈ ℂ
37 3ne0 10962 . . . . . . 7 3 ≠ 0
3835, 37pm3.2i 469 . . . . . 6 (3 ∈ ℂ ∧ 3 ≠ 0)
39 divsubdir 10570 . . . . . 6 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
4035, 36, 38, 39mp3an 1415 . . . . 5 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
41 3m1e2 10984 . . . . . 6 (3 − 1) = 2
4241oveq1i 6537 . . . . 5 ((3 − 1) / 3) = (2 / 3)
4335, 37dividi 10607 . . . . . 6 (3 / 3) = 1
4443oveq1i 6537 . . . . 5 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
4540, 42, 443eqtr3ri 2640 . . . 4 (1 − (1 / 3)) = (2 / 3)
4634, 45oveq12i 6539 . . 3 (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3))
47 2cnne0 11089 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
48 divcan7 10583 . . . 4 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2))
4936, 47, 38, 48mp3an 1415 . . 3 ((1 / 3) / (2 / 3)) = (1 / 2)
5046, 49eqtri 2631 . 2 (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2)
5132, 50breqtri 4602 1 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382   = wceq 1474  wtru 1475  wcel 1976  wne 2779  wss 3539  ifcif 4035  𝒫 cpw 4107   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   < clt 9930  cle 9931  cmin 10117   / cdiv 10533  cn 10867  2c2 10917  3c3 10918  0cn0 11139  cuz 11519  seqcseq 12618  cexp 12677  abscabs 13768  cli 14009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-rlim 14014  df-sum 14211
This theorem is referenced by:  rpnnen2lem5  14732  rpnnen2lem12  14739
  Copyright terms: Public domain W3C validator