MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem3 Structured version   Visualization version   GIF version

Theorem rpnnen2lem3 15571
Description: Lemma for rpnnen2 15581. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem3 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1re 10643 . . . . . . 7 1 ∈ ℝ
2 3nn 11719 . . . . . . 7 3 ∈ ℕ
3 nndivre 11681 . . . . . . 7 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
41, 2, 3mp2an 690 . . . . . 6 (1 / 3) ∈ ℝ
54recni 10657 . . . . 5 (1 / 3) ∈ ℂ
65a1i 11 . . . 4 (⊤ → (1 / 3) ∈ ℂ)
7 0re 10645 . . . . . . . 8 0 ∈ ℝ
8 3re 11720 . . . . . . . . 9 3 ∈ ℝ
9 3pos 11745 . . . . . . . . 9 0 < 3
108, 9recgt0ii 11548 . . . . . . . 8 0 < (1 / 3)
117, 4, 10ltleii 10765 . . . . . . 7 0 ≤ (1 / 3)
12 absid 14658 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
134, 11, 12mp2an 690 . . . . . 6 (abs‘(1 / 3)) = (1 / 3)
14 1lt3 11813 . . . . . . 7 1 < 3
15 recgt1 11538 . . . . . . . 8 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
168, 9, 15mp2an 690 . . . . . . 7 (1 < 3 ↔ (1 / 3) < 1)
1714, 16mpbi 232 . . . . . 6 (1 / 3) < 1
1813, 17eqbrtri 5089 . . . . 5 (abs‘(1 / 3)) < 1
1918a1i 11 . . . 4 (⊤ → (abs‘(1 / 3)) < 1)
20 1nn0 11916 . . . . 5 1 ∈ ℕ0
2120a1i 11 . . . 4 (⊤ → 1 ∈ ℕ0)
22 ssid 3991 . . . . . 6 ℕ ⊆ ℕ
23 simpr 487 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ (ℤ‘1))
24 nnuz 12284 . . . . . . 7 ℕ = (ℤ‘1)
2523, 24eleqtrrdi 2926 . . . . . 6 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℕ)
26 rpnnen2.1 . . . . . . 7 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2726rpnnen2lem1 15569 . . . . . 6 ((ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2822, 25, 27sylancr 589 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0))
2925iftrued 4477 . . . . 5 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → if(𝑘 ∈ ℕ, ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
3028, 29eqtrd 2858 . . . 4 ((⊤ ∧ 𝑘 ∈ (ℤ‘1)) → ((𝐹‘ℕ)‘𝑘) = ((1 / 3)↑𝑘))
316, 19, 21, 30geolim2 15229 . . 3 (⊤ → seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3))))
3231mptru 1544 . 2 seq1( + , (𝐹‘ℕ)) ⇝ (((1 / 3)↑1) / (1 − (1 / 3)))
33 exp1 13438 . . . . 5 ((1 / 3) ∈ ℂ → ((1 / 3)↑1) = (1 / 3))
345, 33ax-mp 5 . . . 4 ((1 / 3)↑1) = (1 / 3)
35 3cn 11721 . . . . . 6 3 ∈ ℂ
36 ax-1cn 10597 . . . . . 6 1 ∈ ℂ
37 3ne0 11746 . . . . . . 7 3 ≠ 0
3835, 37pm3.2i 473 . . . . . 6 (3 ∈ ℂ ∧ 3 ≠ 0)
39 divsubdir 11336 . . . . . 6 ((3 ∈ ℂ ∧ 1 ∈ ℂ ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((3 − 1) / 3) = ((3 / 3) − (1 / 3)))
4035, 36, 38, 39mp3an 1457 . . . . 5 ((3 − 1) / 3) = ((3 / 3) − (1 / 3))
41 3m1e2 11768 . . . . . 6 (3 − 1) = 2
4241oveq1i 7168 . . . . 5 ((3 − 1) / 3) = (2 / 3)
4335, 37dividi 11375 . . . . . 6 (3 / 3) = 1
4443oveq1i 7168 . . . . 5 ((3 / 3) − (1 / 3)) = (1 − (1 / 3))
4540, 42, 443eqtr3ri 2855 . . . 4 (1 − (1 / 3)) = (2 / 3)
4634, 45oveq12i 7170 . . 3 (((1 / 3)↑1) / (1 − (1 / 3))) = ((1 / 3) / (2 / 3))
47 2cnne0 11850 . . . 4 (2 ∈ ℂ ∧ 2 ≠ 0)
48 divcan7 11351 . . . 4 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (3 ∈ ℂ ∧ 3 ≠ 0)) → ((1 / 3) / (2 / 3)) = (1 / 2))
4936, 47, 38, 48mp3an 1457 . . 3 ((1 / 3) / (2 / 3)) = (1 / 2)
5046, 49eqtri 2846 . 2 (((1 / 3)↑1) / (1 − (1 / 3))) = (1 / 2)
5132, 50breqtri 5093 1 seq1( + , (𝐹‘ℕ)) ⇝ (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wtru 1538  wcel 2114  wne 3018  wss 3938  ifcif 4469  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  3c3 11696  0cn0 11900  cuz 12246  seqcseq 13372  cexp 13432  abscabs 14595  cli 14843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045
This theorem is referenced by:  rpnnen2lem5  15573  rpnnen2lem12  15580
  Copyright terms: Public domain W3C validator