MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpreccl Structured version   Visualization version   GIF version

Theorem rpreccl 11801
Description: Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
Assertion
Ref Expression
rpreccl (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)

Proof of Theorem rpreccl
StepHypRef Expression
1 1rp 11780 . 2 1 ∈ ℝ+
2 rpdivcl 11800 . 2 ((1 ∈ ℝ+𝐴 ∈ ℝ+) → (1 / 𝐴) ∈ ℝ+)
31, 2mpan 705 1 (𝐴 ∈ ℝ+ → (1 / 𝐴) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1992  (class class class)co 6605  1c1 9882   / cdiv 10629  +crp 11776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-rp 11777
This theorem is referenced by:  rpreccld  11826  xlemul1  12060  rpexpcl  12816  rpnnen2lem11  14873  prmreclem6  15544  rpmsubg  19724  lebnumii  22668  nmhmcn  22823  lmnn  22964  advlog  24295  cxprec  24327  dvcxp1  24376  loglesqrt  24394  logrec  24396  rlimcnp  24587  rlimcnp2  24588  rlimcnp3  24589  cxplim  24593  logdifbnd  24615  harmonicbnd4  24632  logfacrlim  24844  dchrmusumlema  25077  mulogsumlem  25115  selberg2lem  25134  pntrsumo1  25149  pntibndlem1  25173  blocnilem  27499  subfacval3  30871  recnnltrp  39025  rpgtrecnn  39029  xrralrecnnle  39034  nnrecrp  39037  sumnnodd  39234  dirkertrigeq  39593  preimageiingt  40205  preimaleiinlt  40206
  Copyright terms: Public domain W3C validator